Katarzyna MiÄ**k**us

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3696128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MCPIP1 regulates focal adhesion kinase and Rho GTPase-dependent migration in clear cell renal cell carcinoma. European Journal of Pharmacology, 2022, 922, 174804.	3.5	0
2	Fatty Acids and a High-Fat Diet Induce Epithelial–Mesenchymal Transition by Activating TGFβ and β-Catenin in Liver Cells. International Journal of Molecular Sciences, 2021, 22, 1272.	4.1	9
3	Deletion of Mcpip1 in Mcpip1fl/flAlbCre mice recapitulates the phenotype of human primary biliary cholangitis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166086.	3.8	12
4	MCPIP1 inhibits Wnt/Ĵ²-catenin signaling pathway activity and modulates epithelial-mesenchymal transition during clear cell renal cell carcinoma progression by targeting miRNAs. Oncogene, 2021, 40, 6720-6735.	5.9	21
5	The anti-inflammatory protein MCPIP1 inhibits the development of ccRCC by maintaining high levels of tumour suppressors. European Journal of Pharmacology, 2020, 888, 173591.	3.5	10
6	New therapeutic strategies in nonalcoholic fatty liver disease: a focus on promising drugs for nonalcoholic steatohepatitis. Pharmacological Reports, 2020, 72, 1-12.	3.3	68
7	Activity of MCPIP1 RNase in tumor associated processes. Journal of Experimental and Clinical Cancer Research, 2019, 38, 421.	8.6	19
8	C-Met as a Key Factor Responsible for Sustaining Undifferentiated Phenotype and Therapy Resistance in Renal Carcinomas. Cells, 2019, 8, 272.	4.1	21
9	RNA sequencing reveals widespread transcriptome changes in a renal carcinoma cell line. Oncotarget, 2018, 9, 8597-8613.	1.8	22
10	MCPIP1 contributes to clear cell renal cell carcinomas development. Angiogenesis, 2017, 20, 325-340.	7.2	61
11	The Met tyrosine kinase receptor as a therapeutic target and a potential cancer stem cell factor responsible for therapy resistance. Oncology Reports, 2017, 37, 647-656.	2.6	18
12	MCPIP1 Downregulation in Clear Cell Renal Cell Carcinoma Promotes Vascularization and Metastatic Progression. Cancer Research, 2017, 77, 4905-4920.	0.9	60
13	MET receptor is a potential therapeutic target in high grade cervical cancer. Oncotarget, 2015, 6, 10086-10101.	1.8	15
14	Constitutive activation of MET signaling impairs myogenic differentiation of rhabdomyosarcoma and progression. Oncotarget, 2015, 6, 31378-31398.	1.8	25
15	Downregulation of the CXCR4 receptor inhibits cervical carcinoma metastatic behavior in vitro and in vivo. International Journal of Oncology, 2014, 44, 1853-1860.	3.3	10
16	Multifunctional protein APPL2 contributes to survival of human glioma cells. Molecular Oncology, 2013, 7, 67-84.	4.6	16
17	17AEP-GA, an HSP90 antagonist, is a potent inhibitor of glioblastoma cell proliferation, survival, migration and invasion. Oncology Reports, 2012, 28, 1903-1909.	2.6	15
18	Fenofibrate attenuates contact-stimulated cell motility and gap junctional coupling in DU-145 human prostate cancer cell populations. Oncology Reports, 2011, 26, 447-53.	2.6	24

#	Article	IF	CITATIONS
19	Genetically modified adipose tissueâ~'derived mesenchymal stem cells overexpressing CXCR4 display increased motility, invasiveness, and homing to bone marrow of NOD/SCID mice. Experimental Hematology, 2011, 39, 686-696.e4.	0.4	85
20	Differential expression of Snail1 transcription factor and Snail1-related genes in alveolar and embryonal rhabdomyosarcoma subtypes Folia Histochemica Et Cytobiologica, 2011, 48, 671-7.	1.5	10
21	Role of I-TAC-binding receptors CXCR3 and CXCR7 in proliferation, activation of intracellular signaling pathways and migration of various tumor cell lines Folia Histochemica Et Cytobiologica, 2010, 48, 104-11.	1.5	21
22	Inhibition of rhabdomyosarcoma's metastatic behavior through downregulation of MET receptor signaling Folia Histochemica Et Cytobiologica, 2010, 47, 485-9.	1.5	17
23	Topographical control of prostate cancer cell migration. Molecular Medicine Reports, 2009, 2, 865-71.	2.4	8
24	Optimization of a synthetic siRNA delivery for the treatment of rhabdomyosarcoma. Open Life Sciences, 2008, 3, 371-379.	1.4	2
25	Leukemia Inhibitory Factor: A Newly Identified Metastatic Factor in Rhabdomyosarcomas. Cancer Research, 2007, 67, 2131-2140.	0.9	94
26	Genistein inhibits the contact-stimulated migration of prostate cancer cells. Cellular and Molecular Biology Letters, 2007, 12, 348-61.	7.0	26
27	Trafficking of Normal Stem Cells and Metastasis of Cancer Stem Cells Involve Similar Mechanisms: Pivotal Role of the SDFâ€l –CXCR4 Axis. Stem Cells, 2005, 23, 879-894.	3.2	709
28	Contact stimulation of prostate cancer cell migration: the role of gap junctional coupling and migration stimulated by heterotypic cell-to-cell contacts in determination of the metastatic phenotype of Dunning rat prostate cancer cells. Biology of the Cell, 2005, 97, 893-903.	2.0	41
29	Contact-activated migration of melanoma B16 and sarcoma XC cells. Biochemistry and Cell Biology, 2001, 79, 425-440.	2.0	21