List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3695623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ability of LISA to detect a gravitational-wave background of cosmological origin: The cosmic string case. Physical Review D, 2022, 105, .	4.7	26
2	Search for magnetic monopoles produced via the Schwinger mechanism. Nature, 2022, 602, 63-67.	27.8	22
3	Search for a Scalar Induced Stochastic Gravitational Wave Background in the Third LIGO-Virgo Observing Run. Physical Review Letters, 2022, 128, 051301.	7.8	21
4	Gravitational Waves: The Theorist's Swiss Knife. Universe, 2022, 8, 132.	2.5	3
5	Quantum gravity phenomenology at the dawn of the multi-messenger era—A review. Progress in Particle and Nuclear Physics, 2022, 125, 103948.	14.4	175
6	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
7	CLASS_GWB: robust modeling of the astrophysical gravitational wave background anisotropies. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 030.	5.4	24
8	New horizons for fundamental physics with LISA. Living Reviews in Relativity, 2022, 25, .	26.7	82
9	Simultaneous estimation of astrophysical and cosmological stochastic gravitational-wave backgrounds with terrestrial detectors. Physical Review D, 2021, 103, .	4.7	33
10	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
11	Constraints on extended gravity models through gravitational wave emission. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 014.	5.4	7
12	Eliminating the LIGO bounds on primordial black hole dark matter. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 078.	5.4	32
13	Implications for First-Order Cosmological Phase Transitions from the Third LIGO-Virgo Observing Run. Physical Review Letters, 2021, 126, 151301.	7.8	40
14	LIGO detector characterization in the second and third observing runs. Classical and Quantum Gravity, 2021, 38, 135014.	4.0	128
15	Upper limits on the temperature of inspiraling astrophysical black holes. European Physical Journal C, 2021, 81, 1.	3.9	3
16	Nonlinear gravitational-wave memory from cusps and kinks on cosmic strings. Classical and Quantum Gravity, 2021, 38, 165004.	4.0	6
17	Searching for parity violation with the LIGO-Virgo-KAGRA network. Physical Review D, 2021, 104, .	4.7	14
18	First Constraints on Nuclear Coupling of Axionlike Particles from the Binary Neutron Star Gravitational Wave Event GW170817. Physical Review Letters, 2021, 127, 161101.	7.8	21

#	Article	IF	CITATIONS
19	Impact of Schumann resonances on the Einstein Telescope and projections for the magnetic coupling function. Physical Review D, 2021, 104, .	4.7	10
20	Late time cosmic acceleration in modified Sáez–Ballester theory. Physics of the Dark Universe, 2020, 27, 100446.	4.9	15
21	Projection effects on the observed angular spectrum of the astrophysical stochastic gravitational wave background. Physical Review D, 2020, 101, .	4.7	50
22	Prospects for fundamental physics with LISA. General Relativity and Gravitation, 2020, 52, 1.	2.0	198
23	General gravitational Lagrangian with deformed covariance. Physical Review D, 2020, 102, .	4.7	1
24	Probing the gravitational wave background from cosmic strings with LISA. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 034-034.	5.4	164
25	Science case for the Einstein telescope. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 050-050.	5.4	602
26	Fundamental physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	179
27	Detecting a stochastic gravitational-wave background in the presence of correlated magnetic noise. Physical Review D, 2020, 102, .	4.7	28
28	Prospects for axion searches with Advanced LIGO through binary mergers. Physical Review D, 2019, 99,	4.7	51
29	Fermionic spectral action and the origin of nonzero neutrino masses. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 795, 351-355.	4.1	3
30	Testing modified gravity at cosmological distances with LISA standard sirens. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 024-024.	5.4	129
31	Group Field Theory Condensate Cosmology: An Appetizer. Universe, 2019, 5, 147.	2.5	31
32	Gravitational-wave luminosity distance in quantum gravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 798, 135000.	4.1	27
33	Quantum gravity and gravitational-wave astronomy. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 012-012.	5.4	44
34	Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13ÅTeV <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>p</mml:mi> <mml:mi>p</mml:mi> > 2019_123_021802</mml:math 	7.8	38
35	Cosmic string loop production functions. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 015-015.	5.4	24
36	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	4.0	451

MAIRI SAKELLARIADOU

#	Article	IF	CITATIONS
37	The general scalar–tensor Hamiltonian with deformed covariance. Classical and Quantum Gravity, 2019, 36, 125010.	4.0	2
38	Anisotropies in the Astrophysical Gravitational-Wave Background: The Impact of Black Hole Distributions. Physical Review Letters, 2019, 122, 111101.	7.8	43
39	Estimating the angular power spectrum of the gravitational-wave background in the presence of shot noise. Physical Review D, 2019, 100, .	4.7	34
40	Shot noise in the astrophysical gravitational-wave background. Physical Review D, 2019, 100, .	4.7	36
41	Shortcomings of Shapiro delay-based tests of the equivalence principle on cosmological scales. Physical Review D, 2019, 100, .	4.7	17
42	Constraints on quasidilaton massive gravity. Physical Review D, 2019, 100, .	4.7	3
43	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
44	Neutron star mergers as a probe of modifications of general relativity with finite-range scalar forces. Physical Review D, 2018, 97, .	4.7	61
45	Dynamics of anisotropies close to a cosmological bounce in quantum gravity. Classical and Quantum Gravity, 2018, 35, 015014.	4.0	18
46	Anisotropies in the stochastic gravitational-wave background: Formalism and the cosmic string case. Physical Review D, 2018, 98, .	4.7	68
47	Can we detect quantum gravity with compact binary inspirals?. Physical Review D, 2018, 98, .	4.7	5
48	Deformed general relativity and scalar–tensor models. Classical and Quantum Gravity, 2018, 35, 225005.	4.0	3
49	Noncommutative gravity with self-dual variables. Classical and Quantum Gravity, 2018, 35, 215009.	4.0	8
50	Anisotropies in the astrophysical gravitational-wave background: Predictions for the detection of compact binaries by LIGO and Virgo. Physical Review D, 2018, 98, .	4.7	63
51	Accelerated expansion of the Universe without an inflaton and resolution of the initial singularity from Group Field Theory condensates. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 764, 49-53.	4.1	25
52	Noncommutative geometrical origin of the energy-momentum dispersion relation. Physical Review D, 2017, 95, .	4.7	4
53	Relational evolution of effectively interacting group field theory quantum gravity condensates. Physical Review D, 2017, 95, .	4.7	22
54	Local conformal symmetry in non-Riemannian geometry and the origin of physical scales. European Physical Journal C, 2017, 77, 605.	3.9	24

#	Article	IF	CITATIONS
55	Graviton propagation within the context of the D-material universe. European Physical Journal C, 2017, 77, 445.	3.9	4
56	Gravitational wave bursts from cosmic string cusps and pseudocusps. Physical Review D, 2017, 96, .	4.7	8
57	Polarization-Based Tests of Gravity with the Stochastic Gravitational-Wave Background. Physical Review X, 2017, 7, .	8.9	65
58	Quantum Gravity and Cosmology: an intimate interplay. Journal of Physics: Conference Series, 2017, 880, 012003.	0.4	2
59	Impact of nonlinear effective interactions on group field theory quantum gravity condensates. Physical Review D, 2016, 94, .	4.7	26
60	The D-material universe. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 060-060.	5.4	15
61	Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 026-026.	5.4	256
62	Cosmological implications of interacting group field theory models: Cyclic universe and accelerated expansion. Physical Review D, 2016, 94, .	4.7	50
63	Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC. Journal of High Energy Physics, 2016, 2016, 1.	4.7	41
64	Semiclassical solutions of generalized Wheeler-DeWitt cosmology. Physical Review D, 2016, 93, .	4.7	2
65	Effective cosmological constant induced by stochastic fluctuations of Newton's constant. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 760, 498-501.	4.1	6
66	Linear stability of noncommutative spectral geometry. Physical Review D, 2016, 93, .	4.7	4
67	Noncommutative spectral geometry, Bogoliubov transformations and neutrino oscillations. Journal of Physics: Conference Series, 2015, 626, 012014.	0.4	Ο
68	Aspects of the Bosonic Spectral Action. Journal of Physics: Conference Series, 2015, 631, 012012.	0.4	1
69	Constraining models of extended gravity using Gravity Probe B and LARES experiments. Physical Review D, 2015, 91, .	4.7	49
70	Spectral action with zeta function regularization. Physical Review D, 2015, 91, .	4.7	15
71	Zipping and unzipping in string networks: Dynamics of Y-junctions. Physical Review D, 2015, 91, .	4.7	10
72	Highlights of non-commutative spectral geometry. Journal of Physics: Conference Series, 2014, 484, 012073.	0.4	0

#	Article	IF	CITATIONS
73	Inflation and cosmic (super)strings: implications of their intimate relation revisited. Journal of Physics: Conference Series, 2014, 544, 012027.	0.4	0
74	The physics programme of the MoEDAL experiment at the LHC. International Journal of Modern Physics A, 2014, 29, 1430050.	1.5	93
75	Cusps and pseudocusps in strings with Y-junctions. Physical Review D, 2014, 90, .	4.7	7
76	Fourth order deformed general relativity. Physical Review D, 2014, 90, .	4.7	6
77	Does gravity's rainbow induce inflation without an inflaton?. Physical Review D, 2014, 90, .	4.7	21
78	Is F-term hybrid inflation natural within minimal supersymmetric SO(10)?. European Physical Journal C, 2014, 74, 1.	3.9	7
79	Doubling of the algebra and neutrino mixing within noncommutative spectral geometry. European Physical Journal C, 2014, 74, 1.	3.9	5
80	Spectral regularisation: induced gravity and the onset of inflation. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 035-035.	5.4	13
81	How well do we understand the thermal history of the Universe? Implications of the recent BICEP2 data. Physical Review D, 2014, 90, .	4.7	3
82	Noncommutative spectral geometry and the deformed Hopf algebra structure of quantum field theory. Journal of Physics: Conference Series, 2013, 442, 012016.	0.4	0
83	Constraints on noncommutative spectral action from Gravity Probe B and torsion balance experiments. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 020-020.	5.4	31
84	Stringy models of modified gravity: space-time defects and structure formation. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 015-015.	5.4	13
85	Noncommutative spectral geometry: a short review. Journal of Physics: Conference Series, 2013, 442, 012015.	0.4	3
86	Noncommutative spectral geometry, dissipation and the origin of quantization. Journal of Physics: Conference Series, 2012, 361, 012025.	0.4	4
87	Confronting MOND and TeVeS with strong gravitational lensing over galactic scales: An extended survey. Physical Review D, 2012, 86, .	4.7	19
88	Cosmological consequences of the noncommutative spectral geometry as an approach to unification. Journal of Physics: Conference Series, 2011, 283, 012031.	0.4	3
89	Theoretical constraints on brane inflation and cosmic superstring radiation. Journal of High Energy Physics, 2011, 2011, 1.	4.7	7
90	Noncommutative spectral geometry, algebra doubling, and the seeds of quantization. Physical Review D, 2011, 84, .	4.7	27

#	Article	IF	CITATIONS
91	NONCOMMUTATIVE GEOMETRY SPECTRAL ACTION AS A FRAMEWORK FOR UNIFICATION: INTRODUCTION AND PHENOMENOLOGICAL/COSMOLOGICAL CONSEQUENCES. International Journal of Modern Physics D, 2011, 20, 785-804.	2.1	15
92	Cosmic strings from pseudo-anomalous Fayet-Iliopoulos U(1)FI in D3/D7 brane inflation. Journal of High Energy Physics, 2010, 2010, 1.	4.7	7
93	Formation & evolution of cosmic superstrings: a short review. Fortschritte Der Physik, 2010, 58, 792-796.	4.4	2
94	Constraining the Noncommutative Spectral Action via Astrophysical Observations. Physical Review Letters, 2010, 105, 101602.	7.8	48
95	Lattice refining LQC from an isotropic embedding of anisotropic cosmology. Classical and Quantum Gravity, 2010, 27, 145014.	4.0	2
96	Cosmic string loop distribution on all length scales and at any redshift. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 003-003.	5.4	104
97	Inflation in models with conformally coupled scalar fields: An application to the noncommutative spectral action. Physical Review D, 2010, 82, .	4.7	36
98	Phenomenology of loop quantum cosmology. Journal of Physics: Conference Series, 2010, 222, 012027.	0.4	3
99	Gravitational waves in the spectral action of noncommutative geometry. Physical Review D, 2010, 82, .	4.7	29
100	Cosmology and the noncommutative approach to the standard model. Physical Review D, 2010, 81, .	4.7	36
101	Cosmic Strings and Cosmic Superstrings. Nuclear Physics, Section B, Proceedings Supplements, 2009, 192-193, 68-90.	0.4	50
102	Space–time dimensionality from brane collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 674, 210-212.	4.1	7
103	Inflation mechanism in asymptotic noncommutative geometry. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 680, 263-266.	4.1	39
104	Can the relativistic field theory version of modified Newtonian dynamics avoid dark matter on galactic scales?. Physical Review D, 2009, 79, .	4.7	28
105	Incompatibility of rotation curves with gravitational lensing for TeVeS theory. Physical Review D, 2009, 80, .	4.7	27
106	Unstable anisotropic loop quantum cosmology. Physical Review D, 2009, 80, .	4.7	10
107	On the possibility of dark energy from corrections to the Wheeler–DeWitt equation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 661, 37-41.	4.1	5
108	Unique factor ordering in the continuum limit of loop quantum cosmology. Physical Review D, 2008, 78, .	4.7	14

#	Article	IF	CITATIONS
109	Tachyonic decay of unstable Dirichlet branes. Physical Review D, 2008, 78, .	4.7	3
110	Dynamics of F/D networks: the role of bound states. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 038.	5.4	26
111	Cusps on cosmic superstrings with junctions. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 022.	5.4	12
112	Numerical techniques for solving the quantum constraint equation of generic lattice-refined models in loop quantum cosmology. Physical Review D, 2008, 78, .	4.7	17
113	Necessity of Dark Matter in Modified Newtonian Dynamics within Galactic Scales. Physical Review Letters, 2008, 100, 031302.	7.8	31
114	Cosmic superstrings. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 2881-2894.	3.4	31
115	Production of Topological Defects at the End of Inflation. , 2008, , 359-392.		15
116	SCATTERING OF COSMIC STRINGS BY BLACK HOLES: LOOP FORMATION. International Journal of Modern Physics D, 2007, 16, 1311-1325.	2.1	7
117	Numerical experiments with <i>p</i> F- and <i>q</i> D-strings: the formation of (<i>p</i> , <i>q</i>)â€, bound states. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 021-021.	5.4	55
118	Cosmological evolution of cosmic string loops. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 023-023.	5.4	234
119	Cosmic Strings. , 2007, , 247-288.		33
120	Onset of inflation in loop quantum cosmology. Physical Review D, 2007, 76, .	4.7	28
121	Lattice refining loop quantum cosmology and the matter Hamiltonian. Physical Review D, 2007, 76, .	4.7	33
122	Lattice-refining loop quantum cosmology and inflation. Physical Review D, 2007, 76, .	4.7	37
123	Relativistic modified Newtonian dynamics from string theory?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2007, 652, 97-102.	4.1	31
124	The revival of cosmic strings. Annalen Der Physik, 2006, 15, 264-276.	2.4	9
125	D-term inflation in non-minimal supergravity. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 001-001. Why do we live in <mml:math <="" altimg="si1.gif" overflow="scroll" td=""><td>5.4</td><td>28</td></mml:math>	5.4	28
126	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/x	4.1	51

#	Article	IF	CITATIONS
127	Constraints on supersymmetric grand unified theories from cosmology. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 004-004.	5.4	65
128	A note on the evolution of cosmic string/superstring networks. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 003-003.	5.4	87
129	D-Term Inflation, Cosmic Strings, and Consistency with Cosmic Microwave Background Measurements. Physical Review Letters, 2005, 94, 011303.	7.8	65
130	How generic is cosmic string formation in supersymmetric grand unified theories. Physical Review D, 2003, 68, .	4.7	319
131	Single field inflation and non-Gaussianity. Physical Review D, 2002, 66, .	4.7	42
132	Evidence against or for topological defects in the BOOMERanG data?. Physical Review D, 2001, 65, .	4.7	77
133	Nonvacuum initial states for cosmological perturbations of quantum-mechanical origin. Physical Review D, 2000, 61, .	4.7	86
134	Microwave background anisotropies from scaling seed perturbations. Physical Review D, 1997, 56, 4480-4493.	4.7	30
135	Cosmic Microwave Background Anisotropies from Scaling Seeds: Fit to Observational Data. Physical Review Letters, 1997, 79, 5198-5201.	7.8	20
136	Scaling and small-scale structure in cosmic string networks. Physical Review D, 1997, 56, 637-646.	4.7	91
137	Numerical experiments on string cosmology. Nuclear Physics B, 1996, 468, 319-335.	2.5	64
138	Doppler Peaks in the Angular Power Spectrum of the Cosmic Microwave Background: A Fingerprint of Topological Defects. Physical Review Letters, 1996, 76, 579-582.	7.8	58
139	Semiclassical effects and the onset of inflation. Physical Review D, 1993, 47, 3184-3193.	4.7	30
140	Inflation in inhomogeneous cosmology. Physical Review D, 1992, 45, 2802-2805.	4.7	56
141	Cosmic-string evolution in flat spacetime. Physical Review D, 1990, 42, 349-353.	4.7	39
142	Gravitational waves emitted from infinite strings. Physical Review D, 1990, 42, 354-360.	4.7	80
143	Numerical experiments with cosmic strings in flat spacetime. Physical Review D, 1988, 37, 885-887.	4.7	27