
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3695594/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges. Energy and Environmental Science, 2012, 5, 6012.                                                                   | 30.8 | 1,201     |
| 2  | Making Hydrogen from Water Using a Homogeneous System Without Noble Metals. Journal of the<br>American Chemical Society, 2009, 131, 9192-9194.                                                                                        | 13.7 | 583       |
| 3  | Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods<br>integrated with crystalline Ni <sub>2</sub> P cocatalysts. Energy and Environmental Science, 2015, 8,<br>2668-2676.              | 30.8 | 519       |
| 4  | A Homogeneous System for the Photogeneration of Hydrogen from Water Based on a Platinum(II)<br>Terpyridyl Acetylide Chromophore and a Molecular Cobalt Catalyst. Journal of the American Chemical<br>Society, 2008, 130, 12576-12577. | 13.7 | 433       |
| 5  | Black Phosphorus Revisited: A Missing Metalâ€Free Elemental Photocatalyst for Visible Light Hydrogen<br>Evolution. Advanced Materials, 2017, 29, 1605776.                                                                             | 21.0 | 405       |
| 6  | Visible Light-Driven Hydrogen Production from Aqueous Protons Catalyzed by Molecular Cobaloxime<br>Catalysts. Inorganic Chemistry, 2009, 48, 4952-4962.                                                                               | 4.0  | 347       |
| 7  | Photocatalytic Generation of Hydrogen from Water Using a Platinum(II) Terpyridyl Acetylide<br>Chromophore. Journal of the American Chemical Society, 2006, 128, 7726-7727.                                                            | 13.7 | 284       |
| 8  | Degradation Chemistry and Stabilization of Exfoliated Few-Layer Black Phosphorus in Water. Journal of the American Chemical Society, 2018, 140, 7561-7567.                                                                            | 13.7 | 273       |
| 9  | A novel two-dimensional nickel phthalocyanine-based metal–organic framework for highly efficient<br>water oxidation catalysis. Journal of Materials Chemistry A, 2018, 6, 1188-1195.                                                  | 10.3 | 265       |
| 10 | Photodriven Charge Separation Dynamics in CdSe/ZnS Core/Shell Quantum Dot/Cobaloxime Hybrid for Efficient Hydrogen Production. Journal of the American Chemical Society, 2012, 134, 16472-16475.                                      | 13.7 | 249       |
| 11 | Crystalline Copper Phosphide Nanosheets as an Efficient Janus Catalyst for Overall Water Splitting.<br>ACS Applied Materials & Interfaces, 2017, 9, 2240-2248.                                                                        | 8.0  | 228       |
| 12 | Catalytic water oxidation at single metal sites. Energy and Environmental Science, 2012, 5, 8134.                                                                                                                                     | 30.8 | 226       |
| 13 | Mimicking the Key Functions of Photosystem II in Artificial Photosynthesis for Photoelectrocatalytic<br>Water Splitting. Journal of the American Chemical Society, 2018, 140, 3250-3256.                                              | 13.7 | 224       |
| 14 | Incorporating Graphitic Carbon Nitride (gâ€C <sub>3</sub> N <sub>4</sub> ) Quantum Dots into<br>Bulkâ€Heterojunction Polymer Solar Cells Leads to Efficiency Enhancement. Advanced Functional<br>Materials, 2016, 26, 1719-1728.      | 14.9 | 221       |
| 15 | Synthesis and Enhanced Electrochemical Catalytic Performance of Monolayer<br>WS <sub>2(1–<i>x</i>)</sub> Se <sub>2<i>x</i></sub> with a Tunable Band Gap. Advanced Materials,<br>2015, 27, 4732-4738.                                 | 21.0 | 214       |
| 16 | A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. Journal of Materials Chemistry A, 2016, 4, 675-683.                                                | 10.3 | 214       |
| 17 | MoP is a novel, noble-metal-free cocatalyst for enhanced photocatalytic hydrogen production from water under visible light. Journal of Materials Chemistry A, 2015, 3, 16941-16947.                                                   | 10.3 | 211       |
| 18 | Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole<br>catalyst for oxygen evolution and hydrogen production. Physical Chemistry Chemical Physics, 2014, 16,<br>1883-1893.                 | 2.8  | 188       |

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | High catalytic activity for water oxidation based on nanostructured nickel phosphide precursors.<br>Chemical Communications, 2015, 51, 11626-11629.                                                                                                                  | 4.1  | 182       |
| 20 | Photogeneration of Hydrogen from Water Using an Integrated System Based on TiO2and Platinum(II)<br>Diimine Dithiolate Sensitizers. Journal of the American Chemical Society, 2007, 129, 7726-7727.                                                                   | 13.7 | 176       |
| 21 | Copper phosphide modified cadmium sulfide nanorods as a novel p–n heterojunction for highly<br>efficient visible-light-driven hydrogen production in water. Journal of Materials Chemistry A, 2015, 3,<br>10243-10247.                                               | 10.3 | 175       |
| 22 | MoS <sub>2</sub> nanosheet/TiO <sub>2</sub> nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. Chemical Communications, 2014, 50, 15447-15449.                                                                                     | 4.1  | 173       |
| 23 | A Highly Selective Turn-On Colorimetric, Red Fluorescent Sensor for Detecting Mobile Zinc in Living<br>Cells. Inorganic Chemistry, 2010, 49, 10753-10755.                                                                                                            | 4.0  | 172       |
| 24 | Cobalt complexes as artificial hydrogenases for the reductive side of water splitting. Biochimica Et<br>Biophysica Acta - Bioenergetics, 2013, 1827, 958-973.                                                                                                        | 1.0  | 171       |
| 25 | Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules.<br>Nature Communications, 2018, 9, 4177.                                                                                                                            | 12.8 | 171       |
| 26 | Bi- and Terpyridyl Platinum(II) Chloro Complexes: Molecular Catalysts for the Photogeneration of<br>Hydrogen from Water or Simply Precursors for Colloidal Platinum?. Journal of the American<br>Chemical Society, 2008, 130, 5056-5058.                             | 13.7 | 170       |
| 27 | Microwave-assisted heating synthesis: a general and rapid strategy for large-scale production of<br>highly crystalline g-C <sub>3</sub> N <sub>4</sub> with enhanced photocatalytic H <sub>2</sub><br>production. Green Chemistry, 2014, 16, 4663-4668.              | 9.0  | 166       |
| 28 | Highly Efficient and Stable Waterâ€Oxidation Electrocatalysis with a Very Low Overpotential using<br>FeNiP Substitutionalâ€Solidâ€Solution Nanoplate Arrays. Advanced Materials, 2017, 29, 1704075.                                                                  | 21.0 | 163       |
| 29 | Nanostructured copper oxide electrodeposited from copper(II) complexes as an active catalyst for electrocatalytic oxygen evolution reaction. Electrochemistry Communications, 2014, 46, 1-4.                                                                         | 4.7  | 154       |
| 30 | Earth-Abundant Copper-Based Bifunctional Electrocatalyst for Both Catalytic Hydrogen Production and Water Oxidation. ACS Catalysis, 2015, 5, 1530-1538.                                                                                                              | 11.2 | 150       |
| 31 | Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and<br>Confirmation of Its Robustness by Cu K-Edge X-ray Absorption Spectroscopy. Journal of Physical<br>Chemistry C, 2016, 120, 831-840.                                       | 3.1  | 146       |
| 32 | Noble-Metal-Free Ni(OH) <sub>2</sub> -Modified CdS/Reduced Graphene Oxide Nanocomposite with<br>Enhanced Photocatalytic Activity for Hydrogen Production under Visible Light Irradiation. Journal of<br>Physical Chemistry C, 2014, 118, 22896-22903.                | 3.1  | 140       |
| 33 | Elucidating the Domain Structure of the Cobalt Oxide Water Splitting Catalyst by X-ray Pair<br>Distribution Function Analysis. Journal of the American Chemical Society, 2012, 134, 11096-11099.                                                                     | 13.7 | 139       |
| 34 | A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on<br>three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production<br>from pH 0–14. Journal of Materials Chemistry A, 2015, 3, 1941-1946. | 10.3 | 138       |
| 35 | Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide<br>cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light.<br>Nanoscale, 2016, 8, 4748-4756.                              | 5.6  | 127       |
| 36 | Azide Passivation of Black Phosphorus Nanosheets: Covalent Functionalization Affords Ambient<br>Stability Enhancement. Angewandte Chemie - International Edition, 2019, 58, 1479-1483.                                                                               | 13.8 | 123       |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Ternary metal phosphide nanosheets as a highly efficient electrocatalyst for water reduction to<br>hydrogen over a wide pH range from 0 to 14. Journal of Materials Chemistry A, 2016, 4, 10195-10202.                                            | 10.3 | 117       |
| 38 | Enhanced photocatalytic H <sub>2</sub> production on cadmium sulfide photocatalysts using nickel nitride as a novel cocatalyst. Journal of Materials Chemistry A, 2016, 4, 13289-13295.                                                           | 10.3 | 116       |
| 39 | Photoinduced Electron Transfer in Platinum(II) Terpyridyl Acetylide Chromophores:Â Reductive and<br>Oxidative Quenching and Hydrogen Productionâ€. Journal of Physical Chemistry B, 2007, 111, 6887-6894.                                         | 2.6  | 112       |
| 40 | Synthesis and Structural Characterization of a New Vapochromic Pt(II) Complex Based on the<br>1-Terpyridyl-2,3,4,5,6-pentaphenylbenzene (TPPPB) Ligand. Inorganic Chemistry, 2008, 47, 69-77.                                                     | 4.0  | 112       |
| 41 | Nickel-Based Thin Film on Multiwalled Carbon Nanotubes as an Efficient Bifunctional Electrocatalyst<br>for Water Splitting. ACS Applied Materials & Interfaces, 2014, 6, 15395-15402.                                                             | 8.0  | 112       |
| 42 | Direct growth of porous crystalline NiCo <sub>2</sub> O <sub>4</sub> nanowire arrays on a conductive electrode for high-performance electrocatalytic water oxidation. Journal of Materials Chemistry A, 2014, 2, 20823-20831.                     | 10.3 | 111       |
| 43 | Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation. Electrochimica Acta, 2015, 160, 202-208.                                                                                | 5.2  | 110       |
| 44 | Covalent Cobalt Porphyrin Framework on Multiwalled Carbon Nanotubes for Efficient Water<br>Oxidation at Low Overpotential. Chemistry of Materials, 2015, 27, 4586-4593.                                                                           | 6.7  | 108       |
| 45 | Core–shell amorphous cobalt phosphide/cadmium sulfide semiconductor nanorods for exceptional<br>photocatalytic hydrogen production under visible light. Journal of Materials Chemistry A, 2016, 4,<br>1598-1602.                                  | 10.3 | 108       |
| 46 | Photoconductive Curvedâ€Nanographene/Fullerene Supramolecular Heterojunctions. Angewandte<br>Chemie - International Edition, 2019, 58, 6244-6249.                                                                                                 | 13.8 | 99        |
| 47 | A Large Ï€â€Extended Carbon Nanoring Based on Nanographene Units: Bottomâ€Up Synthesis, Photophysical<br>Properties, and Selective Complexation with Fullerene C <sub>70</sub> . Angewandte Chemie -<br>International Edition, 2017, 56, 158-162. | 13.8 | 95        |
| 48 | Highly efficient simultaneous hydrogen evolution and benzaldehyde production using cadmium<br>sulfide nanorods decorated with small cobalt nanoparticles under visible light. Journal of Catalysis,<br>2018, 357, 147-153.                        | 6.2  | 93        |
| 49 | Optical Properties of Metal–Molybdenum Disulfide Hybrid Nanosheets and Their Application for<br>Enhanced Photocatalytic Hydrogen Evolution. ACS Nano, 2014, 8, 6979-6985.                                                                         | 14.6 | 92        |
| 50 | A facile mechanochemical route to a covalently bonded graphitic carbon nitride<br>(g-C <sub>3</sub> N <sub>4</sub> ) and fullerene hybrid toward enhanced visible light photocatalytic<br>hydrogen production. Nanoscale, 2017, 9, 5615-5623.     | 5.6  | 89        |
| 51 | Selective Synthesis of Conjugated Chiral Macrocycles: Sidewall Segments of (â^')/(+)â€(12,4) Carbon<br>Nanotubes with Strong Circularly Polarized Luminescence. Angewandte Chemie - International<br>Edition, 2020, 59, 1619-1626.                | 13.8 | 85        |
| 52 | Energy upconversion sensitized by a platinum(ii) terpyridyl acetylide complex. Chemical Science, 2010, 1,<br>502.                                                                                                                                 | 7.4  | 84        |
| 53 | Cyclometalated 6-Phenyl-2,2′-bipyridyl (CNN) Platinum(II) Acetylide Complexes: Structure,<br>Electrochemistry, Photophysics, and Oxidative- and Reductive-Quenching Studies. Inorganic<br>Chemistry, 2009, 48, 4306-4316.                         | 4.0  | 83        |
| 54 | Protein Delivery of a Ni Catalyst to Photosystem I for Light-Driven Hydrogen Production. Journal of<br>the American Chemical Society, 2013, 135, 13246-13249.                                                                                     | 13.7 | 83        |

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Molecular cobalt–salen complexes as novel cocatalysts for highly efficient photocatalytic hydrogen<br>production over a CdS nanorod photosensitizer under visible light. Journal of Materials Chemistry A,<br>2015, 3, 15729-15737.                            | 10.3 | 83        |
| 56 | Enhanced photocatalytic hydrogen production in water under visible light using noble metal-free ferrous phosphide as an active cocatalyst. Catalysis Science and Technology, 2015, 5, 4964-4967.                                                               | 4.1  | 83        |
| 57 | A Copper Porphyrinâ€Based Conjugated Mesoporous Polymerâ€Derived Bifunctional Electrocatalyst for<br>Hydrogen and Oxygen Evolution. ChemSusChem, 2016, 9, 2365-2373.                                                                                           | 6.8  | 80        |
| 58 | Enhanced visible light-driven hydrogen production from water by a noble-metal-free system<br>containing organic dye-sensitized titanium dioxide loaded with nickel hydroxide as the cocatalyst.<br>Applied Catalysis B: Environmental, 2014, 160-161, 173-178. | 20.2 | 76        |
| 59 | Platinum(II) Terpyridyl Acetylide Complexes on Platinized TiO2: Toward the Photogeneration of H2 in<br>Aqueous Media. Inorganic Chemistry, 2009, 48, 9653-9663.                                                                                                | 4.0  | 75        |
| 60 | Reversible Mechanochromic Luminescence at Room Temperature in Cationic Platinum(II) Terpyridyl<br>Complexes. Inorganic Chemistry, 2014, 53, 3338-3344.                                                                                                         | 4.0  | 75        |
| 61 | A Threeâ€Dimensional Capsuleâ€like Carbon Nanocage as a Segment Model of Capped Zigzag [12,0] Carbon<br>Nanotubes: Synthesis, Characterization, and Complexation with C <sub>70</sub> . Angewandte Chemie -<br>International Edition, 2018, 57, 9330-9335.     | 13.8 | 75        |
| 62 | In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions. Chemical Communications, 2016, 52, 5546-5549.                                                                             | 4.1  | 74        |
| 63 | The Supramolecular Chemistry of Cycloparaphenylenes and Their Analogs. Frontiers in Chemistry, 2019, 7, 668.                                                                                                                                                   | 3.6  | 72        |
| 64 | Robust and highly active copper-based electrocatalyst for hydrogen production at low overpotential in neutral water. Chemical Communications, 2015, 51, 12954-12957.                                                                                           | 4.1  | 71        |
| 65 | Defect engineering of mesoporous nickel ferrite and its application for highly enhanced water oxidation catalysis. Journal of Catalysis, 2018, 358, 1-7.                                                                                                       | 6.2  | 68        |
| 66 | Noble metal-free cobalt oxide (CoO ) nanoparticles loaded on titanium dioxide/cadmium sulfide<br>composite for enhanced photocatalytic hydrogen production from water. International Journal of<br>Hydrogen Energy, 2014, 39, 13353-13360.                     | 7.1  | 66        |
| 67 | Noble Metal-Free Copper Hydroxide as an Active and Robust Electrocatalyst for Water Oxidation at<br>Weakly Basic pH. ACS Sustainable Chemistry and Engineering, 2016, 4, 2593-2600.                                                                            | 6.7  | 66        |
| 68 | An artificial photosynthetic system containing an inorganic semiconductor and a molecular catalyst for photocatalytic water oxidation. Journal of Catalysis, 2016, 338, 168-173.                                                                               | 6.2  | 66        |
| 69 | Cobalt nitride as an efficient cocatalyst on CdS nanorods for enhanced photocatalytic hydrogen production in water. Catalysis Science and Technology, 2017, 7, 1515-1522.                                                                                      | 4.1  | 63        |
| 70 | Pyrolyzed cobalt porphyrin-based conjugated mesoporous polymers as bifunctional catalysts for<br>hydrogen production and oxygen evolution in water. Chemical Communications, 2016, 52, 13483-13486.                                                            | 4.1  | 61        |
| 71 | Integrating noble-metal-free NiS cocatalyst with a semiconductor heterojunction composite for<br>efficient photocatalytic H2 production in water under visible light. Chinese Journal of Catalysis, 2017,<br>38, 2102-2109.                                    | 14.0 | 61        |
| 72 | Cobalt–Salen Complexes as Catalyst Precursors for Electrocatalytic Water Oxidation at Low<br>Overpotential. Journal of Physical Chemistry C, 2015, 119, 8998-9004.                                                                                             | 3.1  | 60        |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Highly efficient and selective photocatalytic dehydrogenation of benzyl alcohol for simultaneous<br>hydrogen and benzaldehyde production over Ni-decorated Zn0.5Cd0.5S solid solution. Journal of<br>Energy Chemistry, 2019, 30, 71-77.                      | 12.9 | 60        |
| 74 | Hydrogen Production on a Hybrid Photocatalytic System Composed of Ultrathin CdS Nanosheets and a<br>Molecular Nickel Complex. Chemistry - A European Journal, 2015, 21, 4571-4575.                                                                           | 3.3  | 59        |
| 75 | A cycloparaphenylene nanoring with graphenic hexabenzocoronene sidewalls. Chemical<br>Communications, 2016, 52, 7164-7167.                                                                                                                                   | 4.1  | 59        |
| 76 | Cobalt porphyrin electrode films for electrocatalytic water oxidation. Physical Chemistry Chemical Physics, 2014, 16, 11224-11232.                                                                                                                           | 2.8  | 58        |
| 77 | Integrating non-precious-metal cocatalyst Ni3N with g-C3N4 for enhanced photocatalytic H2 production in water under visible-light irradiation. Chinese Journal of Catalysis, 2019, 40, 160-167.                                                              | 14.0 | 57        |
| 78 | Large π-Extended and Curved Carbon Nanorings as Carbon Nanotube Segments. Accounts of Chemical<br>Research, 2021, 54, 4178-4190.                                                                                                                             | 15.6 | 54        |
| 79 | A Large Ï€â€Extended Carbon Nanoring Based on Nanographene Units: Bottomâ€Up Synthesis, Photophysical<br>Properties, and Selective Complexation with Fullerene C 70. Angewandte Chemie, 2017, 129, 164-168.                                                  | 2.0  | 52        |
| 80 | Green Cobalt Oxide (CoO <sub><i>x</i></sub> ) Film with Nanoribbon Structures Electrodeposited<br>from the BF <sub>2</sub> -Annulated Cobaloxime Precursor for Efficient Water Oxidation. ACS Applied<br>Materials & Interfaces, 2014, 6, 10929-10934.       | 8.0  | 47        |
| 81 | Pyrolyzed cobalt porphyrin-modified carbon nanomaterial as an active catalyst for electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2015, 40, 6538-6545.                                                                           | 7.1  | 45        |
| 82 | An unexpected dual-emissive luminogen with tunable aggregation-induced emission and enhanced chiroptical property. Nature Communications, 2022, 13, .                                                                                                        | 12.8 | 45        |
| 83 | First Example of the Solid-State Thermal Cyclometalation of Ligated Benzophenone Imine Giving Novel<br>Luminescent Platinum(II) Species. Inorganic Chemistry, 2007, 46, 4469-4482.                                                                           | 4.0  | 44        |
| 84 | Copper oxide nanosheets prepared by molten salt method for efficient electrocatalytic oxygen evolution reaction with low catalyst loading. Electrochimica Acta, 2018, 263, 318-327.                                                                          | 5.2  | 44        |
| 85 | Self-supported Ni2P nanosheets on low-cost three-dimensional Fe foam as a novel electrocatalyst for efficient water oxidation. Journal of Energy Chemistry, 2020, 42, 71-76.                                                                                 | 12.9 | 44        |
| 86 | Synthesis, Electrochemistry, Photophysics, and Solvatochromism in New Cyclometalated<br>6-Phenyl-4-(p-R-phenyl)-2,2′-bipyridyl (R = Me, COOMe, P(O)(OEt)2) (Câ^§Nâ^§N) Platinum(II) Thiophenolate<br>Chromophores. Inorganic Chemistry, 2009, 48, 1498-1506. | 4.0  | 42        |
| 87 | Homogeneous Molecular Iron Catalysts for Direct Photocatalytic Conversion of Formic Acid to<br>Syngas (CO+H <sub>2</sub> ). Angewandte Chemie - International Edition, 2020, 59, 14818-14824.                                                                | 13.8 | 42        |
| 88 | A Highly Strained Allâ€Phenylene Conjoined Bismacrocycle. Angewandte Chemie - International Edition,<br>2021, 60, 17368-17372.                                                                                                                               | 13.8 | 42        |
| 89 | Facile deposition of nanostructured cobalt oxide catalysts from molecular cobaloximes for efficient water oxidation. Physical Chemistry Chemical Physics, 2013, 15, 12534.                                                                                   | 2.8  | 41        |
| 90 | A Long π-Conjugated Poly( <i>para</i> -Phenylene)-Based Polymeric Segment of Single-Walled Carbon<br>Nanotubes. Journal of the American Chemical Society, 2019, 141, 18938-18943.                                                                            | 13.7 | 41        |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Nitrogen photofixation on holey g-C3N4 nanosheets with carbon vacancies under visible-light irradiation. Chinese Chemical Letters, 2020, 31, 792-796.                                                                                              | 9.0  | 40        |
| 92  | Cadmium Sulfide Nanorods Decorated with Copper Sulfide via Oneâ€Step Cation Exchange Approach for<br>Enhanced Photocatalytic Hydrogen Evolution under Visible Light. ChemCatChem, 2016, 8, 157-162.                                                | 3.7  | 39        |
| 93  | An iron porphyrin-based conjugated network wrapped around carbon nanotubes as a noble-metal-free<br>electrocatalyst for efficient oxygen reduction reaction. Inorganic Chemistry Frontiers, 2016, 3,<br>821-827.                                   | 6.0  | 39        |
| 94  | A highly efficient photoelectrochemical cell using cobalt phosphide-modified nanoporous hematite photoanode for solar-driven water splitting. Journal of Catalysis, 2018, 366, 275-281.                                                            | 6.2  | 38        |
| 95  | A Threeâ€Dimensional Capsuleâ€like Carbon Nanocage as a Segment Model of Capped Zigzag [12,0] Carbon<br>Nanotubes: Synthesis, Characterization, and Complexation with C <sub>70</sub> . Angewandte Chemie,<br>2018, 130, 9474-9479.                | 2.0  | 38        |
| 96  | Selective Synthesis of Conjugated Chiral Macrocycles: Sidewall Segments of (â^')/(+)â€(12,4) Carbon<br>Nanotubes with Strong Circularly Polarized Luminescence. Angewandte Chemie, 2020, 132, 1636-1643.                                           | 2.0  | 38        |
| 97  | Cobalt Phosphide Nanowire Arrays on Conductive Substrate as an Efficient Bifunctional Catalyst for<br>Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 2360-2369.                                                      | 6.7  | 37        |
| 98  | Trinuclear zinc complexes for biologically relevant μ3-oxoanion binding and carbon dioxide fixation.<br>Nature Communications, 2013, 4, 2375.                                                                                                      | 12.8 | 36        |
| 99  | Facile three-step synthesis and photophysical properties of [8]-, [9]-, and [12]cyclo-1,4-naphthalene<br>nanorings <i>via</i> platinum-mediated reductive elimination. Chemical Communications, 2018, 54,<br>988-991.                              | 4.1  | 36        |
| 100 | Structure–function analyses of solar fuelscatalysts using in situ X-ray scattering. Chemical Society Reviews, 2013, 42, 2215-2227.                                                                                                                 | 38.1 | 35        |
| 101 | Structural, spectroscopic and theoretical studies of a vapochromic platinum( <scp>ii</scp> )<br>terpyridyl complex. CrystEngComm, 2014, 16, 5531-5542.                                                                                             | 2.6  | 35        |
| 102 | Incorporating a molecular co-catalyst with a heterogeneous semiconductor heterojunction<br>photocatalyst: Novel mechanism with two electron-transfer pathways for enhanced solar hydrogen<br>production. Journal of Catalysis, 2017, 353, 274-285. | 6.2  | 35        |
| 103 | CdS Nanorods Anchored with Crystalline FeP Nanoparticles for Efficient Photocatalytic Formic Acid Dehydrogenation. ACS Applied Materials & amp; Interfaces, 2021, 13, 23751-23759.                                                                 | 8.0  | 35        |
| 104 | Multi-walled carbon nanotubes supported porous nickel oxide as noble metal-free electrocatalysts for efficient water oxidation. International Journal of Hydrogen Energy, 2014, 39, 10467-10475.                                                   | 7.1  | 32        |
| 105 | Synergistic Effect of a Molecular Cocatalyst and a Heterojunction in a 1 D Semiconductor<br>Photocatalyst for Robust and Highly Efficient Solar Hydrogen Production. ChemSusChem, 2016, 9,<br>3084-3092.                                           | 6.8  | 32        |
| 106 | Boosting Antitumor Sonodynamic Therapy Efficacy of Black Phosphorus via Covalent<br>Functionalization. Advanced Science, 2021, 8, e2102422.                                                                                                        | 11.2 | 32        |
| 107 | Photoconductive Curvedâ€Nanographene/Fullerene Supramolecular Heterojunctions. Angewandte<br>Chemie, 2019, 131, 6310-6315.                                                                                                                         | 2.0  | 30        |
| 108 | A highly selective vapochromic methanol sensor based on one step synthesis of a simple platinum<br>terpyridine complex. Inorganica Chimica Acta, 2010, 363, 1355-1358.                                                                             | 2.4  | 29        |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Enhanced photocatalytic H <sub>2</sub> production on CdS nanorods with simple molecular<br>bidentate cobalt complexes as cocatalysts under visible light. Dalton Transactions, 2016, 45,<br>12897-12905.                     | 3.3  | 29        |
| 110 | Precise synthesis and photophysical properties of a small chiral carbon nanotube segment: cyclo[7]paraphenylene-2,6-naphthylene. Chemical Communications, 2019, 55, 9456-9459.                                               | 4.1  | 28        |
| 111 | Hybridizing MoS2 and C60 via a van der Waals heterostructure toward synergistically enhanced<br>visible light photocatalytic hydrogen production activity. International Journal of Hydrogen Energy,<br>2018, 43, 8698-8706. | 7.1  | 27        |
| 112 | Reaction selectivity of homochiral versus heterochiral intermolecular reactions of prochiral terminal alkynes on surfaces. Nature Communications, 2019, 10, 4122.                                                            | 12.8 | 27        |
| 113 | A supramolecular polymeric heterojunction composed of an all-carbon conjugated polymer and fullerenes. Chemical Science, 2021, 12, 10506-10513.                                                                              | 7.4  | 27        |
| 114 | Efficient suppression of surface charge recombination by CoP-Modified nanoporous BiVO4 for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2021, 46, 15517-15525.                            | 7.1  | 27        |
| 115 | A novel symmetrically multifunctionalized dodecamethoxy-cycloparaphenylene: synthesis, photophysical, and supramolecular properties. Organic Chemistry Frontiers, 2018, 5, 1446-1451.                                        | 4.5  | 26        |
| 116 | Cuprous oxide thin film directly electrodeposited from a simple copper salt on conductive electrode for efficient oxygen evolution reaction. Electrochimica Acta, 2016, 187, 381-388.                                        | 5.2  | 23        |
| 117 | Metal-free graphene quantum dots photosensitizer coupled with nickel phosphide cocatalyst for enhanced photocatalytic hydrogen production in water under visible light. Chinese Journal of Catalysis, 2018, 39, 1753-1761.   | 14.0 | 23        |
| 118 | Synthesis of Giant Ï€â€Extended Molecular Macrocyclic Rings as Finite Models of Carbon Nanotubes<br>Displaying Enriched Sizeâ€Dependent Physical Properties. Chemistry - A European Journal, 2020, 26,<br>2159-2163.         | 3.3  | 23        |
| 119 | Enhancing the photodynamic therapy efficacy of black phosphorus nanosheets by covalently grafting fullerene C <sub>60</sub> . Chemical Science, 2020, 11, 11435-11442.                                                       | 7.4  | 21        |
| 120 | Heptanuclear Co, Ni and mixed Co-Ni clusters as high-performance water oxidation electrocatalysts.<br>Electrochimica Acta, 2017, 249, 343-352.                                                                               | 5.2  | 20        |
| 121 | Synthesis of a magnetic π-extended carbon nanosolenoid with Riemann surfaces. Nature<br>Communications, 2022, 13, 1239.                                                                                                      | 12.8 | 20        |
| 122 | Direct analysis of titanium dioxide solid powder by fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry. Analytica Chimica Acta, 2000, 421, 75-81.                     | 5.4  | 19        |
| 123 | Improving the water splitting performance of nickel electrodes by optimizing their pore structure using a phase inversion method. Catalysis Science and Technology, 2017, 7, 3056-3064.                                      | 4.1  | 18        |
| 124 | Multifunctionalized octamethoxy-[8]cycloparaphenylene: facile synthesis and analysis of novel<br>photophysical and photoinduced electron transfer properties. Organic Chemistry Frontiers, 2019, 6,<br>1885-1890.            | 4.5  | 18        |
| 125 | NiCoP nanoparticles anchored on CdS nanorods for enhanced hydrogen production by visible<br>light-driven formic acid dehydrogenation. International Journal of Hydrogen Energy, 2021, 46,<br>32435-32444.                    | 7.1  | 18        |
| 126 | Tuning the (Chir)Optical Properties and Squeezing out the Inherent Chirality in Polyphenylene‣ocked<br>Helical Carbon Nanorings. Chemistry - A European Journal, 2022, 28, .                                                 | 3.3  | 18        |

| #   | Article                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Oxyanion induced variations in domain structure for amorphous cobalt oxide oxygen evolving<br>catalysts, resolved by X-ray pair distribution function analysis. Acta Crystallographica Section B:<br>Structural Science, Crystal Engineering and Materials, 2015, 71, 713-721. | 1.1  | 17        |
| 128 | A molecular cobaloxime cocatalyst and ultrathin FeOOH nanolayers co-modified BiVO4 photoanode for efficient photoelectrochemical water oxidation. Journal of Energy Chemistry, 2022, 69, 497-505.                                                                              | 12.9 | 17        |
| 129 | Microwave-assisted synthesis of hematite/activated graphene composites with superior performance for photocatalytic reduction of Cr( <scp>vi</scp> ). RSC Advances, 2015, 5, 81438-81444.                                                                                      | 3.6  | 16        |
| 130 | Embedding Noble-Metal-Free Ni2P Cocatalyst on g-C3N4 for Enhanced Photocatalytic H2 Evolution in<br>Water Under Visible Light. Catalysis Letters, 2018, 148, 3741-3749.                                                                                                        | 2.6  | 16        |
| 131 | Synthesis and properties of a nanographene-embedded conjugated macrocyclic nanoring <i>via</i> the Scholl reaction. Chemical Communications, 2021, 57, 9104-9107.                                                                                                              | 4.1  | 16        |
| 132 | Synthesis, Photophysical and Supramolecular Properties of a π-Conjugated Molecular Crown<br>Containing a Pentagonal Unit: A Model Compound for Fullerene C240. Synthesis, 2020, 52, 2535-2540.                                                                                 | 2.3  | 15        |
| 133 | Topology Selectivity in On-Surface Dehydrogenative Coupling Reaction: Dendritic Structure<br><i>versus</i> Porous Graphene Nanoribbon. ACS Nano, 2021, 15, 4617-4626.                                                                                                          | 14.6 | 15        |
| 134 | Pomegranate-like C60@cobalt/nitrogen-codoped porous carbon for high-performance oxygen reduction reaction and lithium-sulfur battery. Nano Research, 2021, 14, 2596-2605.                                                                                                      | 10.4 | 15        |
| 135 | Construction of a short metallofullerene-peapod with a spin probe. Chemical Communications, 2019, 55, 11511-11514.                                                                                                                                                             | 4.1  | 14        |
| 136 | Through-space π-delocalization in a conjugated macrocycle consisting of [2.2]paracyclophane.<br>Chemical Communications, 2019, 55, 14617-14620.                                                                                                                                | 4.1  | 14        |
| 137 | Atomic Scale Analysis of the Enhanced Electro- and Photo-Catalytic Activity in High-Index Faceted<br>Porous NiO Nanowires. Scientific Reports, 2015, 5, 8557.                                                                                                                  | 3.3  | 12        |
| 138 | From Planar Macrocycle to Cylindrical Molecule: Synthesis and Properties of a Phenanthrene-Based<br>Coronal Nanohoop as a Segment of [6,6]Carbon Nanotube. Organic Letters, 2019, 21, 5917-5921.                                                                               | 4.6  | 12        |
| 139 | Kinetic Control over Morphology of Nanoporous Graphene on Surface. ChemPhysChem, 2019, 20, 2327-2332.                                                                                                                                                                          | 2.1  | 12        |
| 140 | Linear Bimetallic Alkynylplatinum(II) Terpyridyl Complexes Bearing <i>p</i> -Phenylene Ethynylene<br>Oligomers: Synthesis, Characterization, Aggregation, and Photophysical Properties. Organometallics,<br>2014, 33, 2738-2746.                                               | 2.3  | 11        |
| 141 | Large π-Extension of Carbon Nanorings by Incorporating Hexa-peri-hexabenzocoronenes. Synlett, 2017,<br>28, 1671-1677.                                                                                                                                                          | 1.8  | 11        |
| 142 | A Highly Strained Allâ€₽henylene Conjoined Bismacrocycle. Angewandte Chemie, 2021, 133, 17508-17512.                                                                                                                                                                           | 2.0  | 11        |
| 143 | Facile deposition of cobalt oxide based electrocatalyst on low-cost and tin-free electrode for water splitting. Journal of Energy Chemistry, 2014, 23, 179-184.                                                                                                                | 12.9 | 10        |
| 144 | On-surface synthesis of planar acenes <i>via</i> regioselective aryl–aryl coupling. Chemical<br>Communications, 2020, 56, 4890-4893.                                                                                                                                           | 4.1  | 9         |

| #   | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Ultrathin MOF Coupling with Molecular Cobaloxime to Construct an Efficient Hybrid Hematite<br>Photoanode for Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2021, 125, 23153-23161.                                                  | 3.1  | 9         |
| 146 | Facile Synthesis of a Conjugated Macrocyclic Nanoring with Graphenic Hexabenzocoronene Sidewall as the Segment of [12,12] Carbon Nanotubes. European Journal of Organic Chemistry, 2022, 2022, .                                                       | 2.4  | 9         |
| 147 | Selective synthesis and (chir)optical properties of binaphthyl-based chiral carbon macrocycles.<br>Chemical Communications, 2022, 58, 8278-8281.                                                                                                       | 4.1  | 9         |
| 148 | Polymer Solar Cells: Incorporating Graphitic Carbon Nitride (g-C3N4) Quantum Dots into<br>Bulk-Heterojunction Polymer Solar Cells Leads to Efficiency Enhancement (Adv. Funct. Mater. 11/2016).<br>Advanced Functional Materials, 2016, 26, 1851-1851. | 14.9 | 8         |
| 149 | Efficient Improved Charge Separation of FeP Decorated Worm-Like Nanoporous BiVO4 Photoanodes for Solar-Driven Water Splitting. Catalysis Letters, 2021, 151, 1231-1238.                                                                                | 2.6  | 6         |
| 150 | Synthesis and Photophysical Properties of [3]Cyclo-1,8-pyrenes via [4 + 2] Cycloaddition Reaction.<br>Journal of Organic Chemistry, 2021, 86, 7038-7045.                                                                                               | 3.2  | 6         |
| 151 | Synthesis of branched tetranuclear alkynylplatinum(II) terpyridine complexes and their photophysical properties. Tetrahedron Letters, 2014, 55, 3486-3490.                                                                                             | 1.4  | 5         |
| 152 | Precise membrane separation of nanoparticles using a microporous polymer containing radially<br>Ï€-conjugated molecular carbocycles. Chemical Communications, 2021, 57, 11867-11870.                                                                   | 4.1  | 5         |
| 153 | Boosting Photoelectrochemical Water Oxidation Performance of Nanoporous BiVO <sub>4</sub> via<br>Dual Cocatalysts Cobaloxime and Ni-OEC Modification. Journal of Physical Chemistry C, 2022, 126,<br>11042-11050.                                      | 3.1  | 5         |
| 154 | A Conjugated Molecular Crown Containing a Single Pyrenyl Unit: Synthesis, Characterization, and Photophysical Properties. Chinese Journal of Organic Chemistry, 2021, 41, 2401.                                                                        | 1.3  | 2         |
| 155 | Homogeneous Molecular Iron Catalysts for Direct Photocatalytic Conversion of Formic Acid to Syngas (CO+H 2 ). Angewandte Chemie, 2020, 132, 14928-14934.                                                                                               | 2.0  | 2         |
| 156 | Solar cells and photocatalytic systems: general discussion. Faraday Discussions, 2014, 176, 313-331.                                                                                                                                                   | 3.2  | 1         |
| 157 | Ozone modification as an efficient strategy for photocatalytic nitrogen fixation under visible light irradiation. Journal of Porous Materials, 2021, 28, 825-834.                                                                                      | 2.6  | 1         |
| 158 | Synthesis and Physical Properties of a Phenanthrene-Based [6,6] Hollow Bilayer Cylindrical Nanoring.<br>Organic Letters, 2021, 23, 7976-7980.                                                                                                          | 4.6  | 0         |