
John M Pascal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3695268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.	4.7	150
2	Cryo-EM structures and biochemical insights into heterotrimeric PCNA regulation of DNA ligase. Structure, 2022, 30, 371-385.e5.	3.3	5
3	Purification and Characterization of Human DNA Ligase IIIα Complexes After Expression in Insect Cells. Methods in Molecular Biology, 2022, 2444, 243-269.	0.9	0
4	Human PARP1 Facilitates Transcription through a Nucleosome and Histone Displacement by Pol II In Vitro. International Journal of Molecular Sciences, 2022, 23, 7107.	4.1	8
5	Captured snapshots of PARP1 in the active state reveal the mechanics of PARP1 allostery. Molecular Cell, 2022, 82, 2939-2951.e5.	9.7	22
6	Dynamics of the HD regulatory subdomain of PARP-1; substrate access and allostery in PARP activation and inhibition. Nucleic Acids Research, 2021, 49, 2266-2288.	14.5	30
7	CARM1 regulates replication fork speed and stress response by stimulating PARP1. Molecular Cell, 2021, 81, 784-800.e8.	9.7	61
8	PARylation prevents the proteasomal degradation of topoisomerase I DNA-protein crosslinks and induces their deubiquitylation. Nature Communications, 2021, 12, 5010.	12.8	26
9	Direct interaction of DNA repair protein tyrosyl DNA phosphodiesterase 1 and the DNA ligase III catalytic domain is regulated by phosphorylation of its flexible N-terminus. Journal of Biological Chemistry, 2021, 297, 100921.	3.4	6
10	An atypical BRCT–BRCT interaction with the XRCC1 scaffold protein compacts human DNA Ligase IIIα within a flexible DNA repair complex. Nucleic Acids Research, 2021, 49, 306-321.	14.5	21
11	HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications. Nature Communications, 2021, 12, 6675.	12.8	34
12	Mechanisms of Nucleosome Reorganization by PARP1. International Journal of Molecular Sciences, 2021, 22, 12127.	4.1	13
13	Poly(ADP-ribose) polymerase enzymes and the maintenance of genome integrity. Cellular and Molecular Life Sciences, 2020, 77, 19-33.	5.4	65
14	Bridging a DNA Break to Leave a Poly(ADP-Ribose) Mark on Chromatin. Molecular Cell, 2020, 80, 560-561.	9.7	2
15	Tissue-Specific Regulation of the Wnt/β-Catenin Pathway by PAGE4 Inhibition of Tankyrase. Cell Reports, 2020, 32, 107922.	6.4	7
16	Clinical PARP inhibitors do not abrogate PARP1 exchange at DNA damage sites in vivo. Nucleic Acids Research, 2020, 48, 9694-9709.	14.5	51
17	Dynamic DNA-bound PCNA complexes co-ordinate Okazaki fragment synthesis, processing and ligation. Journal of Molecular Biology, 2020, 432, 166698.	4.2	11
18	Structural basis for allosteric PARP-1 retention on DNA breaks. Science, 2020, 368, .	12.6	191

#	Article	IF	CITATIONS
19	Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations. Journal of Biological Chemistry, 2020, 295, 4709-4722.	3.4	9
20	Early Life Child Micronutrient Status, Maternal Reasoning, and a Nurturing Household Environment have Persistent Influences on Child Cognitive Development at Age 5 years: Results from MAL-ED. Journal of Nutrition, 2019, 149, 1460-1469.	2.9	20
21	Structural and functional analysis of parameters governing tankyrase-1 interaction with telomeric repeat-binding factor 1 and GDP-mannose 4,6-dehydratase. Journal of Biological Chemistry, 2019, 294, 14574-14590.	3.4	17
22	Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nature Communications, 2019, 10, 2954.	12.8	122
23	Signal-induced PARP1-Erk synergism mediates IEG expression. Signal Transduction and Targeted Therapy, 2019, 4, 8.	17.1	13
24	Design and Synthesis of Poly(ADP-ribose) Polymerase Inhibitors: Impact of Adenosine Pocket-Binding Motif Appendage to the 3-Oxo-2,3-dihydrobenzofuran-7-carboxamide on Potency and Selectivity. Journal of Medicinal Chemistry, 2019, 62, 5330-5357.	6.4	26
25	NAD+ analog reveals PARP-1 substrate-blocking mechanism and allosteric communication from catalytic center to DNA-binding domains. Nature Communications, 2018, 9, 844.	12.8	163
26	PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Current Opinion in Structural Biology, 2018, 53, 187-198.	5.7	128
27	Use of quantitative molecular diagnostic methods to assess the aetiology, burden, and clinical characteristics of diarrhoea in children in low-resource settings: a reanalysis of the MAL-ED cohort study. The Lancet Global Health, 2018, 6, e1309-e1318.	6.3	251
28	Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study. The Lancet Global Health, 2018, 6, e1319-e1328.	6.3	280
29	The comings and goings of PARP-1 in response to DNA damage. DNA Repair, 2018, 71, 177-182.	2.8	236
30	Hydrofluoric Acid-Based Derivatization Strategy To Profile PARP-1 ADP-Ribosylation by LC–MS/MS. Journal of Proteome Research, 2018, 17, 2542-2551.	3.7	15
31	Causal Pathways from Enteropathogens to Environmental Enteropathy: Findings from the MAL-ED Birth Cohort Study. EBioMedicine, 2017, 18, 109-117.	6.1	183
32	Age and Sex Normalization of Intestinal Permeability Measures for the Improved Assessment of Enteropathy in Infancy and Early Childhood. Journal of Pediatric Gastroenterology and Nutrition, 2017, 65, 31-39.	1.8	41
33	The nucleosomal surface is the main target of histone ADP-ribosylation in response to DNA damage. Molecular BioSystems, 2017, 13, 2660-2671.	2.9	34
34	Posttranscriptional Regulation of <i>PARG</i> mRNA by HuR Facilitates DNA Repair and Resistance to PARP Inhibitors. Cancer Research, 2017, 77, 5011-5025.	0.9	59
35	Purification of DNA Damage-Dependent PARPs from E. coli for Structural and Biochemical Analysis. Methods in Molecular Biology, 2017, 1608, 431-444.	0.9	27
36	Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy. AIMS Genetics, 2017, 04, 021-031.	1.9	30

#	Article	IF	CITATIONS
37	Epidemiology and Impact of <i>Campylobacter</i> Infection in Children in 8 Low-Resource Settings: Results From the MAL-ED Study. Clinical Infectious Diseases, 2016, 63, ciw542.	5.8	163
38	Tankyrase-1 Ankyrin Repeats Form an Adaptable Binding Platform for Targets of ADP-Ribose Modification. Structure, 2016, 24, 1679-1692.	3.3	52
39	Tankyrase Sterile α Motif Domain Polymerization Is Required for Its Role in Wnt Signaling. Structure, 2016, 24, 1573-1581.	3.3	40
40	Tail and Kinase Modules Differently Regulate Core Mediator Recruitment and Function InÂVivo. Molecular Cell, 2016, 64, 455-466.	9.7	117
41	Fluorescent sensors of PARP-1 structural dynamics and allosteric regulation in response to DNA damage. Nucleic Acids Research, 2016, 44, gkw710.	14.5	30
42	A Comparison of Diarrheal Severity Scores in the MALâ€ED Multisite Communityâ€Based Cohort Study. Journal of Pediatric Gastroenterology and Nutrition, 2016, 63, 466-473.	1.8	27
43	PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage. Nucleic Acids Research, 2016, 44, 1691-1702.	14.5	72
44	Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1. Molecular Cell, 2015, 60, 742-754.	9.7	245
45	PARP-1 Activation Requires Local Unfolding of an Autoinhibitory Domain. Molecular Cell, 2015, 60, 755-768.	9.7	244
46	Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response. Biochemical Journal, 2015, 471, 37-51.	3.7	7
47	The rise and fall of poly(ADP-ribose): An enzymatic perspective. DNA Repair, 2015, 32, 10-16.	2.8	88
48	Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs. DNA Repair, 2015, 30, 68-79.	2.8	56
49	Selective phosphorylation modulates the PIP2 sensitivity of the CaM–SK channel complex. Nature Chemical Biology, 2014, 10, 753-759.	8.0	59
50	PARP-2 and PARP-3 are selectively activated by 5′ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Nucleic Acids Research, 2014, 42, 7762-7775.	14.5	207
51	Targeting PARP-1 Allosteric Regulation Offers Therapeutic Potential against Cancer. Cancer Research, 2014, 74, 31-37.	0.9	47
52	Discovery and Structure–Activity Relationship of Novel 2,3-Dihydrobenzofuran-7-carboxamide and 2,3-Dihydrobenzofuran-3(2H)-one-7-carboxamide Derivatives as Poly(ADP-ribose)polymerase-1 Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 5579-5601.	6.4	43
53	Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling. Molecular Aspects of Medicine, 2013, 34, 1088-1108.	6.4	58
54	Targeting the Channel-Calmodulin Interface of Small-Conductance Ca2+-Activated Potassium Channels. Biophysical Journal, 2013, 104, 367a.	0.5	0

#	Article	IF	CITATIONS
55	PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Current Opinion in Structural Biology, 2013, 23, 134-143.	5.7	169
56	New players to the field of ADP-ribosylation make the final cut. EMBO Journal, 2013, 32, 1205-1207.	7.8	11
57	Structural Implications for Selective Targeting of PARPs. Frontiers in Oncology, 2013, 3, 301.	2.8	121
58	Unstructured to structured transition of an intrinsically disordered protein peptide in coupling Ca ²⁺ -sensing and SK channel activation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4828-4833.	7.1	58
59	Adaptation to tRNA acceptor stem structure by flexible adjustment in the catalytic domain of class I tRNA synthetases. Rna, 2012, 18, 213-221.	3.5	11
60	Autoregulation of kinase dephosphorylation by ATP binding in AGC protein kinases. Cell Cycle, 2012, 11, 475-478.	2.6	9
61	Structural Basis for DNA Damage–Dependent Poly(ADP-ribosyl)ation by Human PARP-1. Science, 2012, 336, 728-732.	12.6	525
62	Dual Roles of PARP-1 Promote Cancer Growth and Progression. Cancer Discovery, 2012, 2, 1134-1149.	9.4	354
63	Structural Basis for Calmodulin as a Dynamic Calcium Sensor. Structure, 2012, 20, 911-923.	3.3	106
64	Crystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA. Journal of Biological Chemistry, 2011, 286, 10690-10701.	3.4	199
65	Resistance of Akt kinases to dephosphorylation through ATP-dependent conformational plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1120-7.	7.1	74
66	Purification of Human PARP-1 and PARP-1 Domains from Escherichia coli for Structural and Biochemical Analysis. Methods in Molecular Biology, 2011, 780, 209-226.	0.9	81
67	The Zn3 Domain of Human Poly(ADP-ribose) Polymerase-1 (PARP-1) Functions in Both DNA-dependent Poly(ADP-ribose) Synthesis Activity and Chromatin Compaction. Journal of Biological Chemistry, 2010, 285, 18877-18887.	3.4	140
68	The DNA binding domain of human DNA ligase I interacts with both nicked DNA and the DNA sliding clamps, PCNA and hRad9-hRad1-hHus1. DNA Repair, 2009, 8, 912-919.	2.8	21
69	An evaluation of a new chemotherapeutic strategy: Exogenous mutant PARP-1 expression sensitizes pancreatic cancer cells to clinically available platinum-based agents. Journal of the American College of Surgeons, 2009, 209, S53.	0.5	0
70	DNA and RNA ligases: structural variations and shared mechanisms. Current Opinion in Structural Biology, 2008, 18, 96-105.	5.7	85
71	A Third Zinc-binding Domain of Human Poly(ADP-ribose) Polymerase-1 Coordinates DNA-dependent Enzyme Activation. Journal of Biological Chemistry, 2008, 283, 4105-4114.	3.4	166
72	DNA Ligases:  Structure, Reaction Mechanism, and Function. Chemical Reviews, 2006, 106, 687-699.	47.7	246

#	Article	IF	CITATIONS
73	A Flexible Interface between DNA Ligase and PCNA Supports Conformational Switching and Efficient Ligation of DNA. Molecular Cell, 2006, 24, 279-291.	9.7	142
74	RNA ligase does the AMP shuffle. Nature Structural and Molecular Biology, 2006, 13, 950-951.	8.2	2
75	Human DNA Ligases I, III, and IV—Purification and New Specific Assays for These Enzymes. Methods in Enzymology, 2006, 409, 39-52.	1.0	32
76	Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature, 2004, 432, 473-478.	27.8	293
77	Crystal Structure of TB-RBP, a Novel RNA-binding and Regulating Protein. Journal of Molecular Biology, 2002, 319, 1049-1057.	4.2	26
78	Mouse testis–brain RNA-binding protein (TB-RBP): expression, purification and crystal X-ray diffraction. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1692-1694.	2.5	8
79	2.8-Ã crystal structure of a nontoxic type-II ribosome-inactivating protein, ebulin l. Proteins: Structure, Function and Bioinformatics, 2001, 43, 319-326.	2.6	84