
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3694702/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immune cell behaviour and dynamics in the kidney — insights from in vivo imaging. Nature Reviews Nephrology, 2022, 18, 22-37.	9.6	15
2	Ageing enhances cellular immunity to myeloperoxidase and experimental anti-myeloperoxidase glomerulonephritis. Rheumatology, 2022, 61, 2132-2143.	1.9	6
3	Animal models of vasculitis. Current Opinion in Rheumatology, 2022, 34, 10-17.	4.3	2
4	P2RY8 variants in lupus patients uncover a role for the receptor in immunological tolerance. Journal of Experimental Medicine, 2022, 219, .	8.5	26
5	Immunoaging within the kidney via injury-associated tertiary lymphoid tissue. Kidney International, 2022, 102, 9-11.	5.2	1
6	A Core Outcome Set for Trials in Glomerular Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 53-64.	4.5	4
7	Recurrent membranous nephropathy after transplantation: donor antigen and HLA converge in defining risk. Kidney International, 2021, 99, 545-548.	5.2	3
8	Anti-CD20 mAb-Induced B Cell Apoptosis Generates T Cell Regulation of Experimental Myeloperoxidase ANCA-Associated Vasculitis. Journal of the American Society of Nephrology: JASN, 2021, 32, 1071-1083.	6.1	10
9	The impact of antineutrophil cytoplasmic antibodyâ€associated vasculitis on employment and work disability in an Australian population. International Journal of Rheumatic Diseases, 2021, 24, 904-911.	1.9	3
10	Increased burden of rare variants in genes of the endosomal Toll-like receptor pathway in patients with systemic lupus erythematosus. Lupus, 2021, 30, 1756-1763.	1.6	2
11	Tetraspanin CD53 modulates lymphocyte trafficking but not systemic autoimmunity in Lynâ€deficient mice. Immunology and Cell Biology, 2021, 99, 1053-1066.	2.3	3
12	Development of an international Delphi survey to establish core outcome domains for trials in adults with glomerular disease. Kidney International, 2021, 100, 881-893.	5.2	7
13	Collagen IVα345 dysfunction in glomerular basement membrane diseases. I. Discovery of a COL4A3 variant in familial Goodpasture's and Alport diseases. Journal of Biological Chemistry, 2021, 296, 100590.	3.4	19
14	Case of vertebral fracture with nephrolithiasis and hypocitraturia. Journal of Paediatrics and Child Health, 2021, , .	0.8	0
15	A focus group study of self-management in patients with glomerular disease Kidney International Reports, 2021, 7, 56-67.	0.8	2
16	Deletions in VANGL1 are a risk factor for antibody-mediated kidney disease. Cell Reports Medicine, 2021, 2, 100475.	6.5	2
17	Tertiary lymphoid tissue in kidneys: understanding local immunity and inflammation. Kidney International, 2020, 98, 280-283.	5.2	9
18	ANCA-associated vasculitis. Nature Reviews Disease Primers, 2020, 6, 71.	30.5	443

#	Article	IF	CITATIONS
19	ldentifying Outcomes Important to Patients with Glomerular Disease and Their Caregivers. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 673-684.	4.5	66
20	Animal Models of ANCA Associated Vasculitis. Frontiers in Immunology, 2020, 11, 525.	4.8	39
21	Experimental Antiglomerular Basement Membrane GN Induced by a Peptide from Actinomyces. Journal of the American Society of Nephrology: JASN, 2020, 31, 1282-1295.	6.1	8
22	OX40 ligand is inhibitory during the effector phase of crescentic glomerulonephritis. Nephrology Dialysis Transplantation, 2019, 34, 429-441.	0.7	4
23	A plasmid-encoded peptide from Staphylococcus aureus induces anti-myeloperoxidase nephritogenic autoimmunity. Nature Communications, 2019, 10, 3392.	12.8	40
24	Apoptotic Cell–Induced, Antigen-Specific Immunoregulation to Treat Experimental Antimyeloperoxidase GN. Journal of the American Society of Nephrology: JASN, 2019, 30, 1365-1374.	6.1	4
25	Tolerogenic Dendritic Cells Attenuate Experimental Autoimmune Antimyeloperoxidase Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2019, 30, 2140-2157.	6.1	15
26	The renal draining lymph nodes in acute inflammatory kidney disease. Kidney International, 2019, 95, 254-256.	5.2	2
27	Biologicals targeting T helper cell subset differentiating cytokines are effective in the treatment of murine anti-myeloperoxidase glomerulonephritis. Kidney International, 2019, 96, 1121-1133.	5.2	17
28	Standardized Outcomes in Nephrology—Glomerular Disease (SONG-GD): establishing a core outcome set for trials in patients with glomerular disease. Kidney International, 2019, 95, 1280-1283.	5.2	20
29	HLA-DR15-specific inhibition attenuates autoreactivity to the Goodpasture antigen. Journal of Autoimmunity, 2019, 103, 102276.	6.5	7
30	Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nature Communications, 2019, 10, 2201.	12.8	73
31	Molecular Analysis of Goodpasture's Disease Following Hematopoietic Stem Cell Transplant in a Pediatric Patient, Recalls the Conformeropathy of Wild-Type Anti-GBM Disease. Frontiers in Immunology, 2019, 10, 2659.	4.8	0
32	Management and treatment of glomerular diseases (part 1): conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International, 2019, 95, 268-280.	5.2	198
33	Management and treatment of glomerular diseases (part 2): conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International, 2019, 95, 281-295.	5.2	135
34	Platelet retention in inflamed glomeruli occurs via selective prolongation of interactions with immune cells. Kidney International, 2019, 95, 363-374.	5.2	21
35	PD-L1– and calcitriol-dependent liposomal antigen-specific regulation of systemic inflammatory autoimmune disease. JCl Insight, 2019, 4, .	5.0	51
36	Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes. Nature Communications, 2018, 9, 747.	12.8	42

#	Article	IF	CITATIONS
37	Regulatory T cells in renal disease. Clinical and Translational Immunology, 2018, 7, e1004.	3.8	42
38	Renal Dendritic Cells: The Long and Winding Road. Journal of the American Society of Nephrology: JASN, 2018, 29, 4-7.	6.1	22
39	C5a receptor 1 promotes autoimmunity, neutrophil dysfunction and injury in experimental anti-myeloperoxidase glomerulonephritis. Kidney International, 2018, 93, 615-625.	5.2	64
40	Progress in mechanisms and therapy for immunological kidney disease. Nature Reviews Nephrology, 2018, 14, 76-78.	9.6	5
41	Analysis of urinary macrophage migration inhibitory factor in systemic lupus erythematosus. Lupus Science and Medicine, 2018, 5, e000277.	2.7	10
42	Inflammasomes in the Kidney. Experientia Supplementum (2012), 2018, 108, 177-210.	0.9	6
43	Urinary B-cell-activating factor of the tumour necrosis factor family (BAFF) in systemic lupus erythematosus. Lupus, 2018, 27, 2029-2040.	1.6	16
44	HLA and kidney disease: from associations to mechanisms. Nature Reviews Nephrology, 2018, 14, 636-655.	9.6	55
45	Goodpasture's autoimmune disease — A collagen IV disorder. Matrix Biology, 2018, 71-72, 240-249.	3.6	27
46	Chimeric antigen receptor T (CAR T) cells: another cancer therapy with potentialÂapplications in kidney disease andÂtransplantation?. Kidney International, 2018, 94, 4-6.	5.2	8
47	Intrarenal Toll-like receptor 4 and Toll-like receptor 2 expression correlates with injury in antineutrophil cytoplasmic antibody-associated vasculitis. American Journal of Physiology - Renal Physiology, 2018, 315, F1283-F1294.	2.7	20
48	The C3aR promotes macrophage infiltration and regulates ANCA production but does not affect glomerular injury in experimental anti-myeloperoxidase glomerulonephritis. PLoS ONE, 2018, 13, e0190655.	2.5	7
49	Formyl peptide receptor activation inhibits the expansion of effector T cells and synovial fibroblasts and attenuates joint injury in models of rheumatoid arthritis. International Immunopharmacology, 2018, 61, 140-149.	3.8	34
50	CD8+ cells and glomerular crescent formation: outside-in as well as inside-out. Journal of Clinical Investigation, 2018, 128, 3231-3233.	8.2	4
51	Interleukin-17RA Promotes Humoral Responses and Glomerular Injury in Experimental Rapidly Progressive Glomerulonephritis. Nephron, 2017, 135, 207-223.	1.8	10
52	Activated Renal Dendritic Cells Cross Present Intrarenal Antigens After Ischemia-Reperfusion Injury. Transplantation, 2017, 101, 1013-1024.	1.0	34
53	Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Nature, 2017, 545, 243-247.	27.8	181
54	Imaging Leukocyte Responses in the Kidney. Transplantation, 2017, 101, 506-516.	1.0	4

#	Article	IF	CITATIONS
55	InÂVivo Imaging of Inflamed Glomeruli Reveals Dynamics of Neutrophil Extracellular Trap Formation in Glomerular Capillaries. American Journal of Pathology, 2017, 187, 318-331.	3.8	22
56	Pathogenic Role for γδT Cells in Autoimmune Anti-Myeloperoxidase Glomerulonephritis. Journal of Immunology, 2017, 199, 3042-3050.	0.8	9
57	ANCA-Associated Vasculitis: Pathogenesis, Models, and Preclinical Testing. Seminars in Nephrology, 2017, 37, 418-435.	1.6	47
58	Chyluria: When is proteinuria â€~not proteinuria'?. Journal of Paediatrics and Child Health, 2017, 53, 1015-1017.	0.8	0
59	CD8+ T Cells Effect Glomerular Injury in Experimental Anti-Myeloperoxidase GN. Journal of the American Society of Nephrology: JASN, 2017, 28, 47-55.	6.1	44
60	Induced regulatory T cells are phenotypically unstable and do not protect mice from rapidly progressive glomerulonephritis. Immunology, 2017, 150, 100-114.	4.4	11
61	Neutrophil-Mediated Regulation of Innate and Adaptive Immunity: The Role of Myeloperoxidase. Journal of Immunology Research, 2016, 2016, 1-11.	2.2	134
62	The Players: Cells Involved in Glomerular Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 1664-1674.	4.5	72
63	From bench to pet shop to bedside? The environment and immune function in mice. Kidney International, 2016, 90, 1142-1143.	5.2	3
64	The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology, 2016, 21, 736-744.	1.6	170
65	Regulatory <scp>T</scp> cells in immuneâ€mediated renal disease. Nephrology, 2016, 21, 86-96.	1.6	25
66	Patrolling monocytes promote intravascular neutrophil activation and glomerular injury in the acutely inflamed glomerulus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5172-81.	7.1	105
67	Myeloperoxidase Peptide–Based Nasal Tolerance in Experimental ANCA–Associated GN. Journal of the American Society of Nephrology: JASN, 2016, 27, 385-391.	6.1	19
68	Biologics for the treatment of autoimmune renal diseases. Nature Reviews Nephrology, 2016, 12, 217-231.	9.6	45
69	Mast Cell Stabilization Ameliorates Autoimmune Anti-Myeloperoxidase Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2016, 27, 1321-1333.	6.1	18
70	Endogenous Toll-Like Receptor 9 Regulates AKI by Promoting Regulatory T Cell Recruitment. Journal of the American Society of Nephrology: JASN, 2016, 27, 706-714.	6.1	24
71	Programmed death 1 and its ligands do not limit experimental foreign antigenâ€induced immune complex glomerulonephritis. Nephrology, 2015, 20, 892-898.	1.6	4
72	FMS-Like Tyrosine Kinase 3 Ligand Treatment Does Not Ameliorate Experimental Rapidly Progressive Glomerulonephritis. PLoS ONE, 2015, 10, e0123118.	2.5	1

#	Article	IF	CITATIONS
73	CX3CR1 Reduces Kidney Fibrosis by Inhibiting Local Proliferation of Profibrotic Macrophages. Journal of Immunology, 2015, 194, 1628-1638.	0.8	62
74	Renal participation of myeloperoxidase in antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. Kidney International, 2015, 88, 1030-1046.	5.2	127
75	Suppression of Autoimmunity and Renal Disease in Pristaneâ€Induced Lupus by Myeloperoxidase. Arthritis and Rheumatology, 2015, 67, 1868-1880.	5.6	25
76	Targeting IL-17 and IL-23 in Immune Mediated Renal Disease. Current Medicinal Chemistry, 2015, 22, 4341-4365.	2.4	12
77	Mouse Models of Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis. Current Pharmaceutical Design, 2015, 21, 2380-2390.	1.9	6
78	Endogenous Tim-1 promotes severe systemic autoimmunity and renal disease MRL-Faslpr mice. American Journal of Physiology - Renal Physiology, 2014, 306, F1210-F1221.	2.7	8
79	FcÎ ³ RIIB regulates T-cell autoreactivity, ANCA production, and neutrophil activation to suppress anti-myeloperoxidase glomerulonephritis. Kidney International, 2014, 86, 1140-1149.	5.2	17
80	Four pediatric patients with autosomal recessive polycystic kidney disease developed newâ€onset diabetes after renal transplantation. Pediatric Transplantation, 2014, 18, 698-705.	1.0	8
81	Endogenous interleukin (IL)-17A promotes pristane-induced systemic autoimmunity and lupus nephritis induced by pristane. Clinical and Experimental Immunology, 2014, 176, 341-350.	2.6	41
82	Omeprazoleâ€induced acute interstitial nephritis: A possible <scp>Th</scp> 1– <scp>Th</scp> 17â€mediated injury?. Nephrology, 2014, 19, 359-365.	1.6	33
83	Dendritic cells in progressive renal disease: some answers, many questions. Nephrology Dialysis Transplantation, 2014, 29, 2185-2193.	0.7	23
84	Innate IL-17A–Producing Leukocytes Promote Acute Kidney Injury via Inflammasome and Toll-Like Receptor Activation. American Journal of Pathology, 2014, 184, 1411-1418.	3.8	78
85	Regulatory T Cells Dynamically Regulate Selectin Ligand Function during Multiple Challenge Contact Hypersensitivity. Journal of Immunology, 2014, 193, 4934-4944.	0.8	23
86	T Cell Mediated Autoimmune Glomerular Disease in Mice. Current Protocols in Immunology, 2014, 107, 15.27.1-15.27.19.	3.6	11
87	Deletion of bone-marrow-derived receptor for AGEs (RAGE) improves renal function in an experimental mouse model of diabetes. Diabetologia, 2014, 57, 1977-1985.	6.3	26
88	Histopathologic and Clinical Predictors of Kidney Outcomes inÂANCA-Associated Vasculitis. American Journal of Kidney Diseases, 2014, 63, 227-235.	1.9	80
89	Glomerulonephritis Induced by Heterologous Antiâ€GBM Globulin as a Planted Foreign Antigen. Current Protocols in Immunology, 2014, 106, 15.26.1-15.26.20.	3.6	23
90	Multiphoton imaging reveals a new leukocyte recruitment paradigm in the glomerulus. Nature Medicine, 2013, 19, 107-112.	30.7	154

#	Article	IF	CITATIONS
91	Deficiency of Annexin A1 in CD4+ T Cells Exacerbates T Cell–Dependent Inflammation. Journal of Immunology, 2013, 190, 997-1007.	0.8	61
92	Myeloperoxidase (MPO)-specific CD4+ T cells contribute to MPO-anti-neutrophil cytoplasmic antibody (ANCA) associated glomerulonephritis. Cellular Immunology, 2013, 282, 21-27.	3.0	32
93	Thymic Deletion and Regulatory T Cells Prevent Antimyeloperoxidase GN. Journal of the American Society of Nephrology: JASN, 2013, 24, 573-585.	6.1	35
94	The HLA-DRB1*15. Journal of the American Society of Nephrology: JASN, 2013, 24, 419-431.	6.1	66
95	Proteolysis Breaks Tolerance toward Intact α345(IV) Collagen, Eliciting Novel Anti–Glomerular Basement Membrane Autoantibodies Specific for α345NC1 Hexamers. Journal of Immunology, 2013, 190, 1424-1432.	0.8	29
96	Neutrophil myeloperoxidase regulates T-cellâ^'driven tissue inflammation in mice by inhibiting dendritic cell function. Blood, 2013, 121, 4195-4204.	1.4	124
97	Epitope specificity determines pathogenicity and detectability in ANCA-associated vasculitis. Journal of Clinical Investigation, 2013, 123, 1773-1783.	8.2	204
98	Multiphoton imaging reveals a novel leukocyte recruitment paradigm in the inflamed glomerulus. FASEB Journal, 2013, 27, 57.1.	0.5	0
99	Endogenous Tim-1 (Kim-1) promotes T-cell responses and cell-mediated injury in experimental crescentic glomerulonephritis. Kidney International, 2012, 81, 844-855.	5.2	31
100	Mast Cells Contribute to Peripheral Tolerance and Attenuate Autoimmune Vasculitis. Journal of the American Society of Nephrology: JASN, 2012, 23, 1955-1966.	6.1	51
101	CD4+ Th1 cells are effectors in lupus nephritis—but what are their targets?. Kidney International, 2012, 82, 947-949.	5.2	7
102	The immunodominant myeloperoxidase T-cell epitope induces local cell-mediated injury in antimyeloperoxidase glomerulonephritis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2615-24.	7.1	93
103	Endogenous Regulatory T Cells Adhere in Inflamed Dermal Vessels via ICAM-1: Association with Regulation of Effector Leukocyte Adhesion. Journal of Immunology, 2012, 188, 2179-2188.	0.8	43
104	Amelioration of renal ischaemia–reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigenâ€presenting cells. British Journal of Pharmacology, 2012, 166, 194-209.	5.4	46
105	Renal Dendritic Cells Adopt a Pro-Inflammatory Phenotype in Obstructive Uropathy to Activate T Cells but Do Not Directly Contribute to Fibrosis. American Journal of Pathology, 2012, 180, 91-103.	3.8	78
106	Mast cell activation and degranulation promotes renal fibrosis in experimental unilateral ureteric obstruction. Kidney International, 2012, 82, 676-685.	5.2	61
107	The IL-27 Receptor Has Biphasic Effects in Crescentic Glomerulonephritis Mediated Through Th1 Responses. American Journal of Pathology, 2011, 178, 580-590.	3.8	17
108	Interleukin-17A Promotes Early but Attenuates Established Disease in Crescentic Glomerulonephritis in Mice. American Journal of Pathology, 2011, 179, 1188-1198.	3.8	47

#	Article	IF	CITATIONS
109	Signal transducer and activation of transcription 6 (STAT6) regulates T helper type 1 (Th1) and Th17 nephritogenic immunity in experimental crescentic glomerulonephritis. Clinical and Experimental Immunology, 2011, 166, 227-234.	2.6	14
110	Tim-1 promotes cisplatin nephrotoxicity. American Journal of Physiology - Renal Physiology, 2011, 301, F1098-F1104.	2.7	45
111	Tollâ€like receptor 2 induces Th17 myeloperoxidase autoimmunity while Tollâ€like receptor 9 drives Th1 autoimmunity in murine vasculitis. Arthritis and Rheumatism, 2011, 63, 1124-1135.	6.7	64
112	The Th17-Defining Transcription Factor RORγt Promotes Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2011, 22, 472-483.	6.1	78
113	The Emergence of Th17 Cells as Effectors of Renal Injury. Journal of the American Society of Nephrology: JASN, 2011, 22, 235-238.	6.1	97
114	Mast Cells Mediate Acute Kidney Injury through the Production of TNF. Journal of the American Society of Nephrology: JASN, 2011, 22, 2226-2236.	6.1	51
115	Endogenous foxp3+ T-regulatory cells suppress anti-glomerular basement membrane nephritis. Kidney International, 2011, 79, 977-986.	5.2	51
116	Lymphocytes promote albuminuria, but not renal dysfunction or histological damage in a mouse model of diabetic renal injury. Diabetologia, 2010, 53, 1772-1782.	6.3	61
117	Review: T helper 17 cells: Their role in glomerulonephritis. Nephrology, 2010, 15, 513-521.	1.6	30
118	Th17 Cells Promote Autoimmune Anti-Myeloperoxidase Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2010, 21, 925-931.	6.1	150
119	Molecular Architecture of the Goodpasture Autoantigen in Anti-GBM Nephritis. New England Journal of Medicine, 2010, 363, 343-354.	27.0	298
120	Intrinsic renal cell and leukocyte-derived TLR4 aggravate experimental anti-MPO glomerulonephritis. Kidney International, 2010, 78, 1263-1274.	5.2	55
121	TLR9 and TLR4 are required for the development of autoimmunity and lupus nephritis in pristane nephropathy. Journal of Autoimmunity, 2010, 35, 291-298.	6.5	109
122	Platelet Recruitment to the Inflamed Glomerulus Occurs via an αIIbβ3/GPVI-Dependent Pathway. American Journal of Pathology, 2010, 177, 1131-1142.	3.8	65
123	Toll-Like Receptor 9 Enhances Nephritogenic Immunity and Glomerular Leukocyte Recruitment, Exacerbating Experimental Crescentic Glomerulonephritis. American Journal of Pathology, 2010, 177, 2234-2244.	3.8	24
124	Pulmonary Renal Syndromes. , 2009, , 1027-1033.		0
125	Th1 and Th17 Cells Induce Proliferative Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2009, 20, 2518-2524.	6.1	147
126	Targeting renal macrophage accumulation via c- <i>fms</i> kinase reduces tubular apoptosis but fails to modify progressive fibrosis in the obstructed rat kidney. American Journal of Physiology - Renal Physiology, 2009, 296, F177-F185.	2.7	48

#	Article	IF	CITATIONS
127	IL-1RI deficiency ameliorates early experimental renal interstitial fibrosis. Nephrology Dialysis Transplantation, 2009, 24, 3024-3032.	0.7	71
128	IL-23, not IL-12, Directs Autoimmunity to the Goodpasture Antigen. Journal of the American Society of Nephrology: JASN, 2009, 20, 980-989.	6.1	107
129	Endogenous CD100 promotes glomerular injury and macrophage recruitment in experimental crescentic glomerulonephritis. Immunology, 2009, 128, 114-122.	4.4	31
130	Atorvastatin enhances humoral immune responses but does not alter renal injury in experimental crescentic glomerulonephritis. Nephrology, 2009, 14, 650-657.	1.6	1
131	Review article: Kidney dendritic cells: Their role in homeostasis, inflammation and transplantation. Nephrology, 2009, 14, 625-635.	1.6	28
132	Antimyeloperoxidase antibodies rapidly induce α4-integrin–dependent glomerular neutrophil adhesion. Blood, 2009, 113, 6485-6494.	1.4	46
133	In Vivo Imaging of Leukocyte Recruitment to Glomeruli in Mice Using Intravital Microscopy. Methods in Molecular Biology, 2009, 466, 109-117.	0.9	8
134	The tumour suppressor gene p53 modulates the severity of antigen-induced arthritis and the systemic immune response. Clinical and Experimental Immunology, 2008, 152, 345-353.	2.6	24
135	Advances in the pathogenesis of Goodpasture's disease: From epitopes to autoantibodies to effector T cells. Journal of Autoimmunity, 2008, 31, 295-300.	6.5	47
136	The cytoplasmic domain of tissue factor in macrophages augments cutaneous delayed-type hypersensitivity. Journal of Leukocyte Biology, 2008, 83, 902-911.	3.3	13
137	T-bet Deficiency Attenuates Renal Injury in Experimental Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2008, 19, 477-485.	6.1	57
138	Intrarenal Antigens Activate CD4+ Cells via Co-stimulatory Signals from Dendritic Cells. Journal of the American Society of Nephrology: JASN, 2008, 19, 515-526.	6.1	28
139	Targeting Leukocytes in Immune Glomerular Diseases. Current Medicinal Chemistry, 2008, 15, 448-458.	2.4	22
140	Autoimmune responses to the Goodpasture antigen are driven primarily by ILâ€23 and are ILâ€12 independent. FASEB Journal, 2008, 22, 668.26.	0.5	0
141	Using HLA DRB1*1501 transgenic mice to study the HLAâ€ŀinked autoimmune Goodpasture's disease. FASEB Journal, 2008, 22, 667.20.	0.5	Ο
142	Endogenous Myeloperoxidase Promotes Neutrophil-Mediated Renal Injury, but Attenuates T Cell Immunity Inducing Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2007, 18, 760-770.	6.1	85
143	A New Approach to Idiopathic Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2007, 18, 2621-2622.	6.1	6
144	Chapter 3 Pathogenesis of Renal Disease: Cytokines and Other Soluble Factors. Handbook of Systemic Autoimmune Diseases, 2007, 7, 63-79.	0.1	0

#	Article	IF	CITATIONS
145	Methods in Renal Research: A new section in Nephrology (Editorial). Nephrology, 2007, 12, 154-154.	1.6	Ο
146	Plasminogen activator inhibitor-1 production is pathogenetic in experimental murine diabetic renal disease. Diabetologia, 2007, 50, 1315-1326.	6.3	39
147	ILâ€18 is redundant in Tâ€cell responses and in joint inflammation in antigenâ€induced arthritis. Immunology and Cell Biology, 2006, 84, 166-173.	2.3	17
148	The isolation and purification of biologically active recombinant and native autoantigens for the study of autoimmune disease. Journal of Immunological Methods, 2006, 308, 167-178.	1.4	33
149	Inducible Co-Stimulatory Molecule Ligand Is Protective during the Induction and Effector Phases of Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2006, 17, 1044-1053.	6.1	22
150	Anti-Neutrophil Cytoplasmic Antibodies and Effector CD4+ Cells Play Nonredundant Roles in Anti-Myeloperoxidase Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2006, 17, 1940-1949.	6.1	137
151	A Pathogenetic Role for Mast Cells in Experimental Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2006, 17, 150-159.	6.1	54
152	CD100 Enhances Dendritic Cell and CD4+ Cell Activation Leading to Pathogenetic Humoral Responses and Immune Complex Glomerulonephritis. Journal of Immunology, 2006, 177, 3406-3412.	0.8	40
153	Leukocyte Recruitment to the Inflamed Glomerulus: A Critical Role for Platelet-Derived P-Selectin in the Absence of Rolling. Journal of Immunology, 2006, 176, 6991-6999.	0.8	117
154	Macrophage Migration Inhibitory Factor Deficiency Attenuates Macrophage Recruitment, Glomerulonephritis, and Lethality in MRL/lpr Mice. Journal of Immunology, 2006, 177, 5687-5696.	0.8	130
155	CD80 and CD86 costimulatory molecules regulate crescentic glomerulonephritis by different mechanisms. Kidney International, 2005, 68, 584-594.	5.2	42
156	Experimental autoimmune Goodpasture's disease: A pathogenetic role for both effector cells and antibody in injury. Kidney International, 2005, 67, 566-575.	5.2	55
157	Glomerulonephritis, Th1 and Th2: what's new?. Clinical and Experimental Immunology, 2005, 142, 207-215.	2.6	80
158	Glomerular Expression of CD80 and CD86 Is Required for Leukocyte Accumulation and Injury in Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2005, 16, 2012-2022.	6.1	32
159	More Targeted Treatments for Lupus Nephritis: Is the Future (Nearly) Here?. Journal of the American Society of Nephrology: JASN, 2005, 16, 3146-3148.	6.1	3
160	IL-12p40 and IL-18 in Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2005, 16, 2023-2033.	6.1	84
161	Granulocyte Macrophage Colony-Stimulating Factor Expression by Both Renal Parenchymal and Immune Cells Mediates Murine Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2005, 16, 2646-2656.	6.1	40
162	Experimental Autoimmune Anti-Glomerular Basement Membrane Glomerulonephritis: A Protective Role for IFN-Â. Journal of the American Society of Nephrology: JASN, 2004, 15, 1764-1774.	6.1	65

#	Article	IF	CITATIONS
163	Endogenous IL-13 Limits Humoral Responses and Injury in Experimental Glomerulonephritis but Does Not Regulate Th1 Cell-Mediated Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2004, 15, 2373-2382.	6.1	16
164	Contributions of IL-1β and IL-1α to Crescentic Glomerulonephritis in Mice. Journal of the American Society of Nephrology: JASN, 2004, 15, 910-918.	6.1	50
165	The role of flow cytometric ANCA detection in screening for acute pauci-immune crescentic glomerulonephritis. Nephrology Dialysis Transplantation, 2004, 19, 365-370.	0.7	11
166	Plasmin is not protective in experimental renal interstitial fibrosis1. Kidney International, 2004, 66, 68-76.	5.2	67
167	Fibrin independent proinflammatory effects of tissuefactor in experimental crescentic glomerulonephritis. Kidney International, 2004, 66, 647-654.	5.2	25
168	Leukocyte-Derived Interleukin-1β Interacts with Renal Interleukin-1 Receptor I to Promote Renal Tumor Necrosis Factor and Glomerular Injury in Murine Crescentic Glomerulonephritis. American Journal of Pathology, 2004, 164, 1967-1977.	3.8	60
169	An IL-12-Independent Role for CD40-CD154 in Mediating Effector Responses: Studies in Cell-Mediated Glomerulonephritis and Dermal Delayed-Type Hypersensitivity. Journal of Immunology, 2004, 173, 136-144.	0.8	15
170	Endogenous alpha2-antiplasmin does not enhance glomerular fibrin deposition or injury in glomerulonephritis. Journal of Thrombosis and Haemostasis, 2003, 1, 1992-1999.	3.8	1
171	Intrinsic Renal Cell Expression of CD40 Directs Th1 Effectors Inducing Experimental Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2003, 14, 2813-2822.	6.1	38
172	Plasminogen Activator Inhibitor-1 Is a Significant Determinant of Renal Injury in Experimental Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2003, 14, 1487-1495.	6.1	74
173	IFN-Î ³ Production by Intrinsic Renal Cells and Bone Marrow-Derived Cells Is Required for Full Expression of Crescentic Glomerulonephritis in Mice. Journal of Immunology, 2002, 168, 4135-4141.	0.8	54
174	Interleukin-10 inhibits experimental mesangial proliferative glomerulonephritis. Clinical and Experimental Immunology, 2002, 128, 36-43.	2.6	44
175	Effects of CTLA4-Fc on glomerular injury in humorally-mediated glomerulonephritis in BALB/c mice. Clinical and Experimental Immunology, 2002, 128, 429-435.	2.6	11
176	Cytokines, T cells and proliferative glomerulonephritis. Nephrology, 2002, 7, 244-249.	1.6	5
177	The Requirement for Granulocyte-Macrophage Colony-Stimulating Factor and Granulocyte Colony-Stimulating Factor in Leukocyte-Mediated Immune Glomerular Injury. Journal of the American Society of Nephrology: JASN, 2002, 13, 350-358.	6.1	72
178	Interleukin-12 from Intrinsic Cells Is an Effector of Renal Injury in Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2001, 12, 464-471.	6.1	53
179	Chemokines as therapeutic targets in renal disease. Current Opinion in Nephrology and Hypertension, 2000, 9, 505-511.	2.0	20
180	Endogenous interleukin-10 regulates Th1 responses that induce crescentic glomerulonephritis. Kidney International, 2000, 57, 518-525.	5.2	74

#	Article	IF	CITATIONS
181	Oxidant stress is increased within the glomerulus in experimental diabetic nephropathy. Nephrology, 2000, 5, 263-270.	1.6	1
182	IL-18 Has IL-12-Independent Effects in Delayed-Type Hypersensitivity: Studies in Cell-Mediated Crescentic Glomerulonephritis. Journal of Immunology, 2000, 165, 4649-4657.	0.8	47
183	Interleukin-10 Inhibits Macrophage-Induced Glomerular Injury. Journal of the American Society of Nephrology: JASN, 2000, 11, 262-269.	6.1	51
184	Th1 and Th2 T helper cell subsets affect patterns of injury and outcomes in glomerulonephritis. Kidney International, 1999, 55, 1198-1216.	5.2	237
185	IL-12 directs severe renal injury, crescent formation and Th1 responses in murine glomerulonephritis. European Journal of Immunology, 1999, 29, 1-10.	2.9	88
186	IL-12 directs severe renal injury, crescent formation and Th1 responses in murine glomerulonephritis. European Journal of Immunology, 1999, 29, 1-10.	2.9	5
187	Immunopathogenesis of crescentic glomerulonephritis. Current Opinion in Nephrology and Hypertension, 1999, 8, 281-286.	2.0	26
188	IFN-Î ³ Mediates Crescent Formation and Cell-Mediated Immune Injury in Murine Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 1999, 10, 752-759.	6.1	121
189	Interleukin-4 deficiency enhances Th1 responses and crescentic glomerulonephritis in mice. Kidney International, 1998, 53, 112-118.	5.2	63
190	Plasminogen and Plasminogen Activators Protect against Renal Injury in Crescentic Glomerulonephritis. Journal of Experimental Medicine, 1997, 185, 963-968.	8.5	190
191	Interleukin-4 and interleukin-10 attenuate established crescentic glomerulonephritis in mice. Kidney International, 1997, 52, 52-59.	5.2	82
192	Immune modulation with interleukin-4 and interleukin-10 prevents crescent formation and glomerular injury in experimental glomerulonephritis. European Journal of Immunology, 1997, 27, 530-537.	2.9	114