
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3694611/publications.pdf Version: 2024-02-01

ΡΑΠΛ ΟΠΙΑΤΙ

#	Article	IF	CITATIONS
1	Spontaneous Coronary Artery Dissection: Current State of the Science: A Scientific Statement From the American Heart Association. Circulation, 2018, 137, e523-e557.	1.6	763
2	Clinical Features, Management, and Prognosis of Spontaneous Coronary Artery Dissection. Circulation, 2012, 126, 579-588.	1.6	738
3	Spontaneous Coronary Artery Dissection. Circulation: Cardiovascular Interventions, 2014, 7, 777-786.	3.9	488
4	Diverse Origin and Function of Cells With Endothelial Phenotype Obtained From Adult Human Blood. Circulation Research, 2003, 93, 1023-1025.	4.5	424
5	Coronary Artery Tortuosity in Spontaneous Coronary Artery Dissection. Circulation: Cardiovascular Interventions, 2014, 7, 656-662.	3.9	246
6	Spontaneous Coronary Artery Dissection Associated With Pregnancy. Journal of the American College of Cardiology, 2017, 70, 426-435.	2.8	232
7	Spontaneous Coronary Artery Dissection. Journal of the American College of Cardiology, 2020, 76, 961-984.	2.8	219
8	Acute Myocardial Infarction in Young Individuals. Mayo Clinic Proceedings, 2020, 95, 136-156.	3.0	161
9	Association of the PHACTR1/EDN1 Genetic Locus With Spontaneous Coronary Artery Dissection. Journal of the American College of Cardiology, 2019, 73, 58-66.	2.8	147
10	Familial Spontaneous Coronary Artery Dissection. JAMA Internal Medicine, 2015, 175, 821.	5.1	95
11	Characterization of a Resident Population of Adventitial Macrophage Progenitor Cells in Postnatal Vasculature. Circulation Research, 2014, 115, 364-375.	4.5	89
12	Early Natural History of Spontaneous Coronary Artery Dissection. Circulation: Cardiovascular Interventions, 2018, 11, e006772.	3.9	83
13	Coronary Endothelial Dysfunction Is Associated With Inflammation and Vasa Vasorum Proliferation in Patients With Early Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2473-2477.	2.4	78
14	Incidence, Trends, and Outcomes of Type 2 Myocardial Infarction in a Community Cohort. Circulation, 2020, 141, 454-463.	1.6	77
15	Sex Disparities in the Management and Outcomes of Cardiogenic Shock Complicating Acute Myocardial Infarction in the Young. Circulation: Heart Failure, 2020, 13, e007154.	3.9	71
16	Morbidity and Mortality Associated With Balloon Aortic Valvuloplasty. Circulation: Cardiovascular Interventions, 2017, 10, .	3.9	70
17	Coronary endothelial dysfunction in humans is associated with coronary retention of osteogenic endothelial progenitor cells. European Heart Journal, 2010, 31, 2909-2914.	2.2	69
18	Trends, Predictors, and Outcomes of Temporary Mechanical Circulatory Support for Postcardiac Surgery Cardiogenic Shock. American Journal of Cardiology, 2019, 123, 489-497.	1.6	69

#	Article	IF	CITATIONS
19	Temporary Mechanical Circulatory Support for Refractory Cardiogenic Shock Before Left Ventricular Assist Device Surgery. Journal of the American Heart Association, 2018, 7, e010193.	3.7	66
20	Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention. JACC: Cardiovascular Interventions, 2019, 12, 1304-1311.	2.9	59
21	Modulation of the vascular response to injury by autologous blood-derived outgrowth endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H512-H517.	3.2	57
22	What Clinicians Should Know Îʿbout Spontaneous Coronary Artery Dissection. Mayo Clinic Proceedings, 2015, 90, 1125-1130.	3.0	55
23	Identification of Susceptibility Loci for Spontaneous Coronary Artery Dissection. JAMA Cardiology, 2020, 5, 929.	6.1	54
24	Spontaneous coronary artery dissection: challenges of coronary computed tomography angiography. European Heart Journal: Acute Cardiovascular Care, 2018, 7, 609-613.	1.0	50
25	Ten-year trends, predictors and outcomes of mechanical circulatory support in percutaneous coronary intervention for acute myocardial infarction with cardiogenic shock. EuroIntervention, 2021, 16, e1254-e1261.	3.2	48
26	Spontaneous coronary artery dissection: Acute findings on coronary computed tomography angiography. European Heart Journal: Acute Cardiovascular Care, 2019, 8, 467-475.	1.0	45
27	Safety and Risk of Major Complications With Diagnostic Cardiac Catheterization. Circulation: Cardiovascular Interventions, 2019, 12, e007791.	3.9	44
28	Association of Pregnancy With Recurrence of Spontaneous Coronary Artery Dissection Among Women With Prior Coronary Artery Dissection. JAMA Network Open, 2020, 3, e2018170.	5.9	41
29	Rare Missense Variants in <i>TLN1</i> Are Associated With Familial and Sporadic Spontaneous Coronary Artery Dissection. Circulation Genomic and Precision Medicine, 2019, 12, e002437.	3.6	40
30	Effect of Transcatheter Aortic Valve Replacement on Right Ventricular–Pulmonary ArteryÂCoupling. JACC: Cardiovascular Interventions, 2019, 12, 2145-2154.	2.9	39
31	Spontaneous Coronary Artery Dissection. JACC: Cardiovascular Interventions, 2021, 14, 1743-1756.	2.9	36
32	Clinical Impact of High-Sensitivity Cardiac Troponin T Implementation in theÂCommunity. Journal of the American College of Cardiology, 2021, 77, 3160-3170.	2.8	33
33	Emergency Department Presentation of Patients with Spontaneous Coronary Artery Dissection. Journal of Emergency Medicine, 2017, 52, 286-291.	0.7	32
34	Lack of Association of SpontaneousÂCoronary Artery Dissection With Autoimmune Disease. Journal of the American College of Cardiology, 2020, 76, 2226-2234.	2.8	32
35	Coronary Endothelial Dysfunction Is Associated With Increased Risk of Incident Atrial Fibrillation. Journal of the American Heart Association, 2020, 9, e014850.	3.7	32
36	Contemporary prevalence, trends, and outcomes of coronary chronic total occlusions in acute myocardial infarction with cardiogenic shock. IJC Heart and Vasculature, 2019, 24, 100414.	1.1	27

#	Article	IF	CITATIONS
37	Temporal Trends and Outcomes of Left Ventricular Aneurysm After Acute Myocardial Infarction. American Journal of Cardiology, 2020, 133, 32-38.	1.6	27
38	Utility of 30-Day Continuous Ambulatory Monitoring to Identify Patients With Delayed Occurrence of Atrioventricular Block After Transcatheter Aortic Valve Replacement. Circulation: Cardiovascular Interventions, 2019, 12, e007635.	3.9	26
39	The SYNTAX Trial. Circulation: Cardiovascular Interventions, 2009, 2, 463-467.	3.9	21
40	Sex Differences in Long-Term Cause-Specific Mortality After Percutaneous Coronary Intervention. Circulation: Cardiovascular Interventions, 2018, 11, e006062.	3.9	21
41	Complications from percutaneous-left ventricular assist devices versus intra-aortic balloon pump in acute myocardial infarction-cardiogenic shock. PLoS ONE, 2020, 15, e0238046.	2.5	17
42	Evolution of the Crush Technique for Bifurcation Stenting. JACC: Cardiovascular Interventions, 2021, 14, 2315-2326.	2.9	17
43	IMPROvE-CED Trial: Intracoronary Autologous CD34+ Cell Therapy for Treatment of Coronary Endothelial Dysfunction in Patients With Angina and Nonobstructive Coronary Arteries. Circulation Research, 2022, 130, 326-338.	4.5	17
44	Transcatheter aortic valve replacement outcomes in mixed aortic valve disease compared to predominant aortic stenosis. International Journal of Cardiology, 2020, 299, 209-214.	1.7	16
45	Revascularization in Patients With Spontaneous Coronary Artery Dissection: Where Are We Now?. Journal of the American Heart Association, 2021, 10, e018551.	3.7	16
46	Google Trends Insights Into Reduced Acute Coronary Syndrome Admissions During the COVID-19 Pandemic: Infodemiology Study. JMIR Cardio, 2020, 4, e20426.	1.7	16
47	Cell Therapy for Acute Myocardial Infarction. Medical Clinics of North America, 2007, 91, 769-785.	2.5	15
48	Three Dimensional Quantitative Coronary Angiography Can Detect Reliably Ischemic Coronary Lesions Based on Fractional Flow Reserve. Journal of Korean Medical Science, 2015, 30, 716.	2.5	15
49	Rapid Exclusion of Acute Myocardial Injury and Infarction With a Single High-Sensitivity Cardiac Troponin T in the Emergency Department: A Multicenter United States Evaluation. Circulation, 2022, 145, 1708-1719.	1.6	15
50	Nanoparticle-Mediated Cell Capture Enables Rapid Endothelialization of a Novel Bare Metal Stent. Tissue Engineering - Part A, 2018, 24, 1157-1166.	3.1	14
51	Prediction of Cardiac and Noncardiac Mortality After Percutaneous Coronary Intervention. Circulation: Cardiovascular Interventions, 2015, 8, e002121.	3.9	13
52	Comparison of Complications and In-Hospital Mortality in Takotsubo (Apical Ballooning/Stress) Cardiomyopathy Versus Acute Myocardial Infarction. American Journal of Cardiology, 2020, 132, 29-35.	1.6	13
53	Coronary endothelial function testing may improve long-term quality of life in subjects with microvascular coronary endothelial dysfunction. Open Heart, 2019, 6, e000870.	2.3	12
54	Physical Activity and Exercise Patterns After Spontaneous Coronary Artery Dissection: Insights From a Large Multinational Registry. Frontiers in Cardiovascular Medicine, 2021, 8, 642739.	2.4	12

#	Article	IF	CITATIONS
55	ST-segment Elevation, Myocardial Injury, and Suspected or Confirmed COVID-19 Patients: Diagnostic and Treatment Uncertainties. Mayo Clinic Proceedings, 2020, 95, 1107-1111.	3.0	11
56	Temporal Incidence and Predictors of Highâ€Grade Atrioventricular Block After Transcatheter Aortic Valve Replacement. Journal of the American Heart Association, 2021, 10, e020033.	3.7	11
57	Rationale and design of the BA-SCAD (Beta-blockers and Antiplatelet agents in patients with) Tj ETQq1 1 0.7843 (English Ed), 2022, 75, 515-522.	0.6	/Overlock 10 11
58	Relation of Activated Clotting Times During Percutaneous Coronary Intervention to Outcomes. American Journal of Cardiology, 2016, 117, 703-708.	1.6	9
59	Chronic inhibition of lipoprotein-associated phospholipase A2 does not improve coronary endothelial function: A prospective, randomized-controlled trial. International Journal of Cardiology, 2018, 253, 7-13.	1.7	9
60	Left Bundle Branch Block Before Transcatheter Aortic Valve Replacement. Circulation: Cardiovascular Interventions, 2018, 11, e007361.	3.9	7
61	Coronary perivascular epicardial adipose tissue and major adverse cardiovascular events after ST segment-elevation myocardial infarction. Atherosclerosis, 2020, 302, 27-35.	0.8	7
62	Fibrinolysis vs. primary percutaneous coronary intervention for STâ€segment elevation myocardial infarction cardiogenic shock. ESC Heart Failure, 2021, 8, 2025-2035.	3.1	7
63	Routine Continuous Electrocardiographic Monitoring Following Percutaneous Coronary Interventions. Circulation: Cardiovascular Interventions, 2020, 13, e008290.	3.9	5
64	Paclitaxel-Coated Balloons and Stents for Lower Extremity Peripheral Arterial Disease Interventions. Mayo Clinic Proceedings, 2020, 95, 1569-1573.	3.0	4
65	Characteristics and Long-Term Outcomes of Patients With Prior Coronary Artery Bypass Grafting Undergoing Primary Percutaneous Coronary Intervention for ST-Segment Elevation Myocardial Infarction. American Journal of Cardiology, 2020, 135, 1-8.	1.6	4
66	Susceptibility Locus for Pregnancy-Associated Spontaneous Coronary Artery Dissection. Circulation Genomic and Precision Medicine, 2021, 14, e003398.	3.6	4
67	Remote robotic percutaneous coronary intervention: An animal feasibility study. Catheterization and Cardiovascular Interventions, 2021, 97, E274-E279.	1.7	4
68	Anomalous coronary artery origin from the opposite sinus in patients with bicuspid aortic valve: comparison with tricuspid aortic valve. Open Heart, 2021, 8, e001567.	2.3	2
69	Characterization of Blood Outgrowth Endothelial Cells (BOEC) from Porcine Peripheral Blood. Journal of Visualized Experiments, 2022, , .	0.3	2
70	Safe Triage of STEMI Patients to General Telemetry Units After Successful Primary Percutaneous Coronary Intervention. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2021, 5, 1118-1127.	2.4	1
71	Activated Clotting Time and Radial Artery Occlusion. Circulation: Cardiovascular Interventions, 2019, 12, e008398.	3.9	0
72	Response by Waterbury et al to Letters Regarding Article, "Early Natural History of Spontaneous Coronary Artery Dissectionâ€: Circulation: Cardiovascular Interventions, 2019, 12, e007678.	3.9	0

RAJIV GULATI

#	Article	IF	CITATIONS
73	Abstract 17453: Clinical Features of Peripartum Spontaneous Coronary Artery Dissection. Circulation, 2014, 130, .	1.6	Ο
74	First Transcatheter Aortic Valve Replacement With Gadobutrol in a Patient With Severe Contrast Allergy. Cardiovascular Revascularization Medicine, 2022, 40, 123-125.	0.8	0
75	Renal function changes associated with transcatheter aortic valve-in-valve for prosthetic regurgitation compared to stenosis. IJC Heart and Vasculature, 2022, 39, 100999.	1.1	Ο
76	Abstract 21004: Relation Between Optimal Medical Therapy Trends on Outcomes in Patients With Peripheral Arterial Disease and Coronary Artery Disease Undergoing Cardiac Catheterization. Circulation, 2017, 136, .	1.6	0