Timothy J Flowers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3694562/publications.pdf

Version: 2024-02-01

72 papers 15,716 citations

41 h-index 102487 66 g-index

74 all docs

74 docs citations

times ranked

74

12063 citing authors

#	Article	IF	CITATIONS
1	Distribution and Potential Uses of Halophytes within the Gulf Cooperation Council States. Agronomy, 2022, 12, 1030.	3.0	9
2	Root Growth and Structure of Growth Zone in Halophytes and Glycophytes Under Salinity. , 2021, , 1351-1393.		2
3	Dynamic Responses of the Halophyte Suaeda maritima to Various Levels of External NaCl Concentration. , 2021, , 1637-1657.		O
4	Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. Theoretical and Applied Genetics, 2021, 134, 3495-3533.	3.6	73
5	Consortia of Plant-Growth-Promoting Rhizobacteria Isolated from Halophytes Improve Response of Eight Crops to Soil Salinization and Climate Change Conditions. Agronomy, 2021, 11, 1609.	3.0	27
6	Casparian bands and suberin lamellae: Key targets for breeding salt tolerant crops?. Environmental and Experimental Botany, 2021, 191, 104600.	4.2	18
7	Is chloride toxic to seed germination in mixed-salt environments? A case study with the coastal halophyte Suaeda maritima in the presence of seawater. Plant Stress, 2021, 2, 100030.	5 . 5	7
8	Evolution in Angiosperm Halophytes. , 2021, , 2117-2146.		O
9	ZxNHX1 indirectly participates in controlling K+ homeostasis in the xerophyte Zygophyllum xanthoxylum. Functional Plant Biology, 2021, 48, 402.	2.1	4
10	Evolution in Angiosperm Halophytes. , 2021, , 1-30.		1
11	Salt Tolerance in the Halophyte Suaeda maritima L. Dum.â€"the Effect of Oxygen Supply and Culture Medium on Growth. Journal of Soil Science and Plant Nutrition, 2021, 21, 578-586.	3.4	1
12	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
13	Improving crop salt tolerance using transgenic approaches: An update and physiological analysis. Plant, Cell and Environment, 2020, 43, 2932-2956.	5.7	70
14	Secretory structures in plants: Lessons from the Plumbaginaceae on their origin, evolution and roles in stress tolerance. Plant, Cell and Environment, 2020, 43, 2912-2931.	5.7	34
15	SsHKT1;1 is coordinated with SsSOS1 and SsNHX1 to regulate Na+ homeostasis in Suaeda salsa under saline conditions. Plant and Soil, 2020, 449, 117-131.	3.7	34
16	Aliphatic suberin confers salt tolerance to Arabidopsis by limiting Na+ influx, K+ efflux and water backflow. Plant and Soil, 2020, 448, 603-620.	3.7	25
17	Root Growth and Structure of Growth Zone in Halophytes and Glycophytes Under Salinity. , 2020, , $1\text{-}44$.		O
18	Dynamic Responses of the Halophyte Suaeda maritima to Various Levels of External NaCl Concentration., 2020,, 1-22.		1

#	Article	IF	CITATIONS
19	Mechanisms of Ion Transport in Halophytes: From Roots to Leaves. Tasks for Vegetation Science, 2019, , 125-150.	0.6	5
20	Could vesicular transport of Na+ and Cl– be a feature of salt tolerance in halophytes?. Annals of Botany, 2019, 123, 1-18.	2.9	53
21	Seed germination niche of the halophyte Suaeda maritima to combined salinity and temperature is characterised by a halothermal time model. Environmental and Experimental Botany, 2018, 155, 177-184.	4.2	41
22	Metabolic and physiological adjustment of <i>Suaeda maritima</i> to combined salinity and hypoxia. Annals of Botany, 2017, 119, mcw282.	2.9	37
23	Tissue tolerance: an essential but elusive trait for salt-tolerant crops. Functional Plant Biology, 2016, 43, 1103.	2.1	162
24	eHALOPH a Database of Salt-Tolerant Plants: Helping put Halophytes to Work. Plant and Cell Physiology, 2016, 57, e10-e10.	3.1	135
25	Plant salt tolerance: adaptations in halophytes. Annals of Botany, 2015, 115, 327-331.	2.9	553
26	Introduction to the Special Issue: Halophytes in a changing world. AoB PLANTS, 2015, 7, .	2.3	68
27	Is the reduced growth of the halophyte Suaeda maritima under hypoxia due to toxicity of iron or manganese?. Environmental and Experimental Botany, 2015, 116, 61-70.	4.2	8
28	Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany, 2015, 115, 419-431.	2.9	516
29	Differentiation of low-affinity Na+ uptake pathways and kinetics of the effects of K+ on Na+ uptake in the halophyte Suaeda maritima. Plant and Soil, 2013, 368, 629-640.	3.7	31
30	The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: The role of antioxidants. Environmental and Experimental Botany, 2013, 87, 120-125.	4.2	67
31	Oxygen dynamics in a salt-marsh soil and in Suaeda maritima during tidal submergence. Environmental and Experimental Botany, 2013, 92, 73-82.	4.2	36
32	Germination strategies of halophyte seeds under salinity. Environmental and Experimental Botany, 2013, 92, 4-18.	4.2	211
33	Ranking of 11 coastal halophytes from salt marshes in northwest Turkey according their salt tolerance. Turkish Journal of Botany, 2013, 37, 1125-1133.	1.2	12
34	High phenotypic plasticity of Suaeda maritima observed under hypoxic conditions in relation to its physiological basis. Annals of Botany, 2012, 109, 1027-1036.	2.9	22
35	Effect of low salinity on ion accumulation, gas exchange and postharvest drought resistance and habit of Coriandrum sativum L Plant and Soil, 2012, 355, 199-214.	3.7	7
36	A new screening technique for salinity resistance in rice (<i>Oryza sativa</i> L.) seedlings using bypass flow. Plant, Cell and Environment, 2012, 35, 1099-1108.	5.7	50

#	Article	IF	CITATIONS
37	Diversity and physiological plasticity of vegetable genotypes of coriander improves herb yield, habit and harvesting window in any season. Euphytica, 2011, 180, 369-384.	1.2	1
38	Plant–water relations, growth and productivity of tomato irrigated by different methods with saline and nonâ€saline water. Irrigation and Drainage, 2011, 60, 446-453.	1.7	7
39	Mechanisms of sodium uptake by roots of higher plants. Plant and Soil, 2010, 326, 45-60.	3.7	222
40	Salt sensitivity in chickpea. Plant, Cell and Environment, 2010, 33, 490-509.	5.7	194
41	Studies on sodium bypass flow in lateral rootless mutants <i>lrt1</i> and <i>lrt2</i> , and crown rootless mutant <i>crl1</i> of rice (<i>Oryza sativa</i> L.). Plant, Cell and Environment, 2010, 33, 687-701.	5.7	50
42	The role of lateral roots in bypass flow in rice (<i>Oryza sativa</i> L.). Plant, Cell and Environment, 2010, 33, 702-716.	5.7	60
43	Glutathione half-cell reduction potential and α-tocopherol as viability markers during the prolonged storage of <i>Suaeda maritima</i>	1.7	38
44	The effect of saline hypoxia on growth and ion uptake in Suaeda maritima. Functional Plant Biology, 2010, 37, 646.	2.1	18
45	Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional Plant Biology, 2010, 37, 604.	2.1	556
46	The ionic effects of NaCl on physiology and gene expression in rice genotypes differing in salt tolerance. Plant and Soil, 2009, 315, 135-147.	3.7	43
47	<i>Puccinellia tenuiflora</i> maintains a low Na ⁺ level under salinity by limiting unidirectional Na ⁺ influx resulting in a high selectivity for K ⁺ over Na ⁺ . Plant, Cell and Environment, 2009, 32, 486-496.	5.7	142
48	The effects of sodium chloride on ornamental shrubs. Scientia Horticulturae, 2009, 122, 586-593.	3.6	98
49	<i>Review:</i> Physiological Approaches to the Improvement of Chemical Control of Japanese Knotweed (<i>Fallopia japonica</i>). Weed Science, 2009, 57, 584-592.	1.5	46
50	Effect of irrigation methods, management and salinity of irrigation water on tomato yield, soil moisture and salinity distribution. Irrigation Science, 2008, 26, 313-323.	2.8	141
51	Flooding tolerance in halophytes. New Phytologist, 2008, 179, 964-974.	7.3	247
52	Salinity tolerance in halophytes*. New Phytologist, 2008, 179, 945-963.	7.3	2,141
53	Crops for a Salinized World. Science, 2008, 322, 1478-1480.	12.6	604
54	Do Conditions During Dormancy Influence Germination of Suaeda maritima?. Annals of Botany, 2008, 101, 1319-1327.	2.9	31

#	Article	IF	CITATIONS
55	Low-Affinity Na+ Uptake in the Halophyte <i>Suaeda maritima</i> Â. Plant Physiology, 2007, 145, 559-571.	4.8	166
56	Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany, 2006, 57, 1059-1078.	4.8	455
57	Why does salinity pose such a difficult problem for plant breeders?. Agricultural Water Management, 2005, 78, 15-24.	5.6	289
58	Improving crop salt tolerance. Journal of Experimental Botany, 2004, 55, 307-319.	4.8	1,718
59	Single-Cell Measurements of the Contributions of Cytosolic Na+ and K+ to Salt Tolerance. Plant Physiology, 2003, 131, 676-683.	4.8	274
60	Effects of salinity and ozone, individually and in combination, on the growth and ion contents of two chickpea (Cicer arietinum L.) varieties. Environmental Pollution, 2002, 120, 397-403.	7.5	48
61	Title is missing!. Plant and Soil, 2001, 231, 1-9.	3.7	160
62	Quantitative Trait Loci for Component Physiological Traits Determining Salt Tolerance in Rice. Plant Physiology, 2001, 125, 406-422.	4.8	307
63	Salt Tolerance at the Whole-Plant Level. , 2000, , 107-123.		8
64	Silicon reduces sodium uptake in rice (Oryza satival.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant, Cell and Environment, 1999, 22, 559-565.	5.7	340
65	Breeding for salt tolerance in crop plants — the role of molecular biology. Acta Physiologiae Plantarum, 1997, 19, 427-433.	2.1	128
66	Breeding for Salinity Resistance in Crop Plants: Where Next?. Functional Plant Biology, 1995, 22, 875.	2.1	634
67	Short- and Long-Term Effects of Salinity on Leaf Growth in Rice (Oryza satival.). Journal of Experimental Botany, 1991, 42, 881-889.	4.8	243
68	Salinity Resistance in Rice (Oryza sativa L.) And a Pyramiding Approach to Breeding Varieties for Saline Soils. Functional Plant Biology, 1986, 13, 161.	2.1	217
69	Ion Relations of Plants Under Drought and Salinity. Functional Plant Biology, 1986, 13, 75.	2.1	279
70	Halophytes. Quarterly Review of Biology, 1986, 61, 313-337.	0.1	453
71	VARIABILITY IN THE RESISTANCE OF SODIUM CHLORIDE SALINITY WITHIN RICE (ORYZA SATIVA L.) VARIETIES. New Phytologist, 1981, 88, 363-373.	7.3	286
72	The Mechanism of Salt Tolerance in Halophytes. Annual Review of Plant Physiology, 1977, 28, 89-121.	10.9	1,676