
Jaeheung Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3694312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex. Nature, 2011, 478, 502-505.	27.8	292
2	Mononuclear Metal–O ₂ Complexes Bearing Macrocyclic <i>N</i> -Tetramethylated Cyclam Ligands. Accounts of Chemical Research, 2012, 45, 1321-1330.	15.6	187
3	Intrinsic properties and reactivities of mononuclear nonheme iron–oxygen complexes bearing the tetramethylcyclam ligand. Coordination Chemistry Reviews, 2013, 257, 381-393.	18.8	157
4	Geometric and electronic structure and reactivity of a mononuclear â€ [~] side-on' nickel(iii)–peroxo complex. Nature Chemistry, 2009, 1, 568-572.	13.6	153
5	Synthesis, Structural, and Spectroscopic Characterization and Reactivities of Mononuclear Cobalt(III)â^Peroxo Complexes. Journal of the American Chemical Society, 2010, 132, 16977-16986.	13.7	124
6	Fluorescent Zinc Sensor with Minimized Proton-Induced Interferences: Photophysical Mechanism for Fluorescence Turn-On Response and Detection of Endogenous Free Zinc Ions. Inorganic Chemistry, 2012, 51, 8760-8774.	4.0	119
7	An "End-On―Chromium(III)-Superoxo Complex: Crystallographic and Spectroscopic Characterization and Reactivity in Câ^'H Bond Activation of Hydrocarbons. Journal of the American Chemical Society, 2010, 132, 5958-5959.	13.7	116
8	Structural Characterization and Remarkable Axial Ligand Effect on the Nucleophilic Reactivity of a Nonheme Manganese(III)–Peroxo Complex. Angewandte Chemie - International Edition, 2009, 48, 4150-4153.	13.8	115
9	Comparison of High-Spin and Low-Spin Nonheme Fe ^{III} –OOH Complexes in O–O Bond Homolysis and H-Atom Abstraction Reactivities. Journal of the American Chemical Society, 2013, 135, 3286-3299.	13.7	105
10	Water as an Oxygen Source in the Generation of Mononuclear Nonheme Iron(IV) Oxo Complexes. Angewandte Chemie - International Edition, 2009, 48, 1803-1806.	13.8	98
11	Ligand Topology Effect on the Reactivity of a Mononuclear Nonheme Iron(IV)-Oxo Complex in Oxygenation Reactions. Journal of the American Chemical Society, 2011, 133, 11876-11879.	13.7	94
12	Mononuclear nickel(ii)-superoxo and nickel(iii)-peroxo complexes bearing a common macrocyclic TMC ligand. Chemical Science, 2013, 4, 1502.	7.4	93
13	Water as an Oxygen Source: Synthesis, Characterization, and Reactivity Studies of a Mononuclear Nonheme Manganese(IV) Oxo Complex. Angewandte Chemie - International Edition, 2010, 49, 8190-8194.	13.8	90
14	A mononuclear nonheme iron(iii)–peroxo complex binding redox-inactive metal ions. Chemical Science, 2013, 4, 3917.	7.4	79
15	Electronâ€Transfer Reduction of Dinuclear Copper Peroxo and Bisâ€Î¼â€oxo Complexes Leading to the Catalytic Fourâ€Electron Reduction of Dioxygen to Water. Chemistry - A European Journal, 2012, 18, 1084-1093.	3.3	78
16	Chromium(IV)–Peroxo Complex Formation and Its Nitric Oxide Dioxygenase Reactivity. Journal of the American Chemical Society, 2012, 134, 15269-15272.	13.7	71
17	A fluorescence turn-on H2O2 probe exhibits lysosome-localized fluorescence signals. Chemical Communications, 2012, 48, 5449.	4.1	71
18	A Mononuclear Non-Heme High-Spin Iron(III)–Hydroperoxo Complex as an Active Oxidant in Sulfoxidation Reactions, Journal of the American Chemical Society, 2013, 135, 8838-8841	13.7	71

#	Article	IF	CITATIONS
19	A Chromium(III)–Superoxo Complex in Oxygen Atom Transfer Reactions as a Chemical Model of Cysteine Dioxygenase. Journal of the American Chemical Society, 2012, 134, 11112-11115.	13.7	66
20	Chromium(v)-oxo and chromium(iii)-superoxo complexes bearing a macrocyclic TMC ligand in hydrogen atom abstraction reactions. Chemical Science, 2011, 2, 2057.	7.4	61
21	A Bis(μ-alkylperoxo)dinickel(II) Complex as a Reaction Intermediate for the Oxidation of the Methyl Groups of the Me2-tpa Ligand to Carboxylate and Alkoxide Ligands. Angewandte Chemie - International Edition, 2004, 43, 3300-3303.	13.8	56
22	Reactivity of a cobalt(III)-peroxo complex in oxidative nucleophilic reactions. Journal of Inorganic Biochemistry, 2008, 102, 2155-2159.	3.5	56
23	Mechanistic Insights into Tunable Metal-Mediated Hydrolysis of Amyloid-β Peptides. Journal of the American Chemical Society, 2017, 139, 2234-2244.	13.7	55
24	Mechanistic Insights into the C–H Bond Activation of Hydrocarbons by Chromium(IV) Oxo and Chromium(III) Superoxo Complexes. Inorganic Chemistry, 2014, 53, 645-652.	4.0	52
25	XAS and DFT Investigation of Mononuclear Cobalt(III) Peroxo Complexes: Electronic Control of the Geometric Structure in CoO ₂ versus NiO ₂ Systems. Inorganic Chemistry, 2011, 50, 614-620.	4.0	51
26	Syntheses, isolation, and structures of nickel(II) and copper(II) coordination polymers with a tetraaza macrocyclic ligand. Inorganica Chimica Acta, 2001, 317, 252-258.	2.4	50
27	Solid-state and solvent-free synthesis of azines, pyrazoles, and pyridazinones using solid hydrazine. Tetrahedron Letters, 2013, 54, 1384-1388.	1.4	50
28	Spectroscopic Characterization and Reactivity Studies of a Mononuclear Nonheme Mn(III)–Hydroperoxo Complex. Journal of the American Chemical Society, 2014, 136, 12229-12232.	13.7	49
29	Synthesis, characterization and reactivity of non-heme 1st row transition metal-superoxo intermediates. Coordination Chemistry Reviews, 2019, 382, 126-144.	18.8	48
30	Monomeric and polymeric copper(II) hexaaza macrocyclic complexes with btc anions (btc=1,2,4,5-benzenetetracarboxylic acid). Inorganica Chimica Acta, 2003, 342, 305-310.	2.4	47
31	Mononuclear Manganese–Peroxo and Bis(μâ€oxo)dimanganese Complexes Bearing a Common Nâ€Methylat Macrocyclic Ligand. Chemistry - A European Journal, 2013, 19, 14119-14125.	ed _{3.3}	44
32	Sequential Reaction Intermediates in Aliphatic Câ^'H Bond Functionalization Initiated by a Bis(μ-oxo)dinickel(III) Complex. Inorganic Chemistry, 2006, 45, 2873-2885.	4.0	39
33	Spectroscopic and computational characterization of Cull–OOR (R = H or cumyl) complexes bearing a Me6-tren ligand. Dalton Transactions, 2011, 40, 2234.	3.3	39
34	Steric Effect on the Nucleophilic Reactivity of Nickel(III) Peroxo Complexes. Inorganic Chemistry, 2015, 54, 6176-6183.	4.0	39
35	Reactivity of a Cobalt(III)–Hydroperoxo Complex in Electrophilic Reactions. Inorganic Chemistry, 2016, 55, 12391-12399.	4.0	38
36	Polymeric nickel(II) and copper(II) complexes with btc2â^' ions as bridging ligands (btc2â^'=1,2,4,5-benzenetetracarboxylic acid dianion). Inorganic Chemistry Communication, 2003, 6, 474-477.	3.9	37

#	Article	IF	CITATIONS
37	Synthesis of Azines in Solid State: Reactivity of Solid Hydrazine with Aldehydes and Ketones. Organic Letters, 2011, 13, 6386-6389.	4.6	34
38	Isolation and characterization of the first stable bicarbonato complex in a nickel(ii) system: identification of unusual monodentate coordination. Chemical Communications, 2004, , 1796-1797.	4.1	33
39	Synthesis, Characterization, and Reactivity of Cobalt(III)–Oxygen Complexes Bearing a Macrocyclic Nâ€Tetramethylated Cyclam Ligand. Chemistry - A European Journal, 2013, 19, 14112-14118.	3.3	33
40	An Iridium(III) Complex as a Photoactivatable Tool for Oxidation of Amyloidogenic Peptides with Subsequent Modulation of Peptide Aggregation. Chemistry - A European Journal, 2017, 23, 1645-1653.	3.3	33
41	Nucleophilic reactivity of copper(<scp>ii</scp>)–alkylperoxo complexes. Chemical Communications, 2017, 53, 9328-9331.	4.1	32
42	A Mononuclear Alkylperoxocopper(II) Complex as a Reaction Intermediate in the Oxidation of the Methyl Group of the Supporting Ligand. Angewandte Chemie - International Edition, 2006, 45, 6911-6914.	13.8	30
43	Oxidation Reactivity of Bis(μâ€oxo) Dinickel(III) Complexes: Arene Hydroxylation of the Supporting Ligand. Angewandte Chemie - International Edition, 2009, 48, 3304-3307.	13.8	29
44	Structural, Spectroscopic, and Electrochemical Properties of a Series of High-Spin Thiolatonickel(II) Complexes. Inorganic Chemistry, 2007, 46, 11308-11315.	4.0	28
45	Isolation and structural characterization of the elusive 1 : 1 adduct of hydrazine and carbon dioxide. Chemical Communications, 2011, 47, 11219.	4.1	28
46	New Synthetic Routes to a Disulfidodinickel(II) Complex: Characterization and Reactivity of a Ni ₂ (Âμ-η ² :η ² -S ₂) Core. Inorganic Chemistry, 2008, 47, 3931-3933.	4.0	27
47	Preparation and Reactivity of a Nickel Dihydride Complex. Angewandte Chemie - International Edition, 2011, 50, 10578-10580.	13.8	27
48	Dinuclear Iron(III) and Nickel(II) Complexes Containing <i>Nâ€{</i> 2â€Pyridylmethyl)â€ <i>N</i> ′â€{2â€hydroxyethyl)ethylenediamine: Catalytic Oxidation and Magn Properties. Chemistry - A European Journal, 2017, 23, 3023-3033.	etäca	26
49	Structure and Reactivity of a Mononuclear Nonheme Manganese(III)–Iodosylarene Complex. Journal of the American Chemical Society, 2018, 140, 16037-16041.	13.7	26
50	Nucleophilic reactivity of a copper(II)-hydroperoxo complex. Communications Chemistry, 2019, 2, .	4.5	26
51	Combined Experimental and Theoretical Approach To Understand the Reactivity of a Mononuclear Cu(II)â^'Hydroperoxo Complex in Oxygenation Reactions. Journal of Physical Chemistry A, 2008, 112, 13102-13108.	2.5	25
52	Tuning Structures and Properties for Developing Novel Chemical Tools toward Distinct Pathogenic Elements in Alzheimer's Disease. ACS Chemical Neuroscience, 2018, 9, 800-808.	3.5	25
53	Dynamic Transformation of a Ag ⁺ -Coordinated Supramolecular Nanostructure from a 1D Needle to a 1D Helical Tube via a 2D Ribbon Accompanying the Conversion of Complex Structures. Journal of the American Chemical Society, 2021, 143, 3113-3123.	13.7	24
54	Twist to Boost: Circumventing Quantum Yield and Dissymmetry Factor Trade-Off in Circularly Polarized Luminescence. Inorganic Chemistry, 2021, 60, 7738-7752.	4.0	24

#	Article	IF	CITATIONS
55	Mechanistic insights into the reactions of hydride transfer versus hydrogen atom transfer by a trans-dioxoruthenium(<scp>vi</scp>) complex. Dalton Transactions, 2015, 44, 7634-7642.	3.3	21
56	Tuning the Reactivity of Chromium(III)-Superoxo Species by Coordinating Axial Ligands. Inorganic Chemistry, 2015, 54, 10513-10520.	4.0	21
57	Oxidation of Naphthalene with a Manganese(IV) Bis(hydroxo) Complex in the Presence of Acid. Angewandte Chemie - International Edition, 2018, 57, 7764-7768.	13.8	21
58	Distinct Reactivity of a Mononuclear Peroxocobalt(III) Species toward Activation of Nitriles. Journal of the American Chemical Society, 2017, 139, 10960-10963.	13.7	19
59	Trans-bis(dicyanamido)nickel(II) complexes with polyaza macrocyclic ligands. Transition Metal Chemistry, 2002, 27, 429-432.	1.4	16
60	Strategic Design of 2,2′-Bipyridine Derivatives to Modulate Metal–Amyloid-β Aggregation. Inorganic Chemistry, 2017, 56, 6695-6705.	4.0	16
61	An infinite 1D hydrogen-bonded polymer built from an azido cobalt(III) tetraaza macrocyclic complex. Inorganic Chemistry Communication, 2003, 6, 284-287.	3.9	15
62	Aggregation of an <i>n</i> –i€* Molecule Induces Fluorescence Turn-on. Journal of Physical Chemistry C, 2017, 121, 11907-11914.	3.1	15
63	Artificial Control of Cell Signaling Using a Photocleavable Cobalt(III)–Nitrosyl Complex. Angewandte Chemie - International Edition, 2019, 58, 10126-10131.	13.8	15
64	Direct Synthesis of Imines <i>via</i> Solid State Reactions of Carbamates with Aldehydes. Advanced Synthesis and Catalysis, 2013, 355, 389-394.	4.3	13
65	Highly stereoselective directed reactions and an efficient synthesis of azafuranoses from a chiral aziridine. Organic and Biomolecular Chemistry, 2013, 11, 3629.	2.8	13
66	Helicity-driven chiral self-sorting supramolecular polymerization with Ag ⁺ : right- and left-helical aggregates. Chemical Science, 2022, 13, 3109-3117.	7.4	13
67	A high-spin nickel(ii) borohydride complex in dehalogenation. Inorganic Chemistry Frontiers, 2016, 3, 157-163.	6.0	12
68	Controlled Regulation of the Nitrile Activation of a Peroxocobalt(III) Complex with Redox-Inactive Lewis Acidic Metals. Journal of the American Chemical Society, 2021, 143, 11382-11392.	13.7	12
69	Structures and magnetic properties of catena-(μ-MO4-O,O′)[Ni(II)(L)]·5H2O (M=Cr, Mo;) Tj ETQq1 1 0.784 163-167.	·314 rgBT 2.4	/Overlock 10 11
70	Redox-Inactive Metal Ions That Enhance the Nucleophilic Reactivity of an Alkylperoxocopper(II) Complex. Inorganic Chemistry, 2020, 59, 9938-9943.	4.0	11
71	Stereochemistry of metal tetramethylcyclam complexes directed by an unexpected anion effect. Dalton Transactions, 2017, 46, 13166-13170.	3.3	10
72	Spectroscopic and Computational Studies of a Series of High-Spin Ni(II) Thiolate Complexes. Inorganic Chemistry, 2010, 49, 6535-6544.	4.0	9

#	Article	IF	CITATIONS
73	Proton Switch in the Secondary Coordination Sphere to Control Catalytic Events at the Metal Center: Biomimetic Oxo Transfer Chemistry of Nickel Amidate Complex. Chemistry - A European Journal, 2021, 27, 4700-4708.	3.3	9
74	A functional model for quercetin 2,4-dioxygenase: Geometric and electronic structures and reactivity of a nickel(II) flavonolate complex. Journal of Inorganic Biochemistry, 2022, 226, 111632.	3.5	9
75	Nucleophilic reactivity of a mononuclear cobalt(<scp>iii</scp>)–bis(<i>tert</i> -butylperoxo) complex. Chemical Communications, 2020, 56, 9449-9452.	4.1	8
76	One-pot solvent-free reductive amination with a solid ammonium carbamate salt from CO2 and amine. RSC Advances, 2014, 4, 46203-46207.	3.6	7
77	Investigating Superoxide Transfer through a μ-1,2-O ₂ Bridge between Nonheme Ni ^{III} –Peroxo and Mn ^{II} Species by DFT Methods to Bridge Theoretical and Experimental Views. Journal of Physical Chemistry Letters, 2014, 5, 2437-2442.	4.6	7
78	Tailoring Hydrophobic Interactions between Probes and Amyloid-β Peptides for Fluorescent Monitoring of Amyloid-β Aggregation. ACS Omega, 2018, 3, 5141-5154.	3.5	7
79	Hydride-Transfer Reaction to a Mononuclear Manganese(III) Iodosylarene Complex. Inorganic Chemistry, 2021, 60, 7612-7616.	4.0	7
80	Peroxocobalt(<scp>iii</scp>) species activates nitriles <i>via</i> a superoxocobalt(<scp>ii</scp>) diradical state. Dalton Transactions, 2020, 49, 2819-2826.	3.3	6
81	Spectroscopic Evidence for a Cobalt-Bound Peroxyhemiacetal Intermediate. Jacs Au, 2021, 1, 1594-1600.	7.9	6
82	Structure and Reactivity of Nonporphyrinic Terminal Manganese(Ⅳ)–Hydroxide Complexes in the Oxidative Electrophilic Reaction. Inorganic Chemistry, 2022, 61, 4292-4301.	4.0	6
83	Reactivity difference in the oxidative nucleophilic reaction of peroxonickel(<scp>iii</scp>) intermediates with open-chain and macrocyclic systems. Inorganic Chemistry Frontiers, 2019, 6, 2112-2117.	6.0	5
84	Theoretical Study on the Aliphatic C─H Bond Activation by a Mononuclear Manganese(III) Iodosylbenzene Complex. Bulletin of the Korean Chemical Society, 2021, 42, 1033-1036.	1.9	5
85	Artificial Control of Cell Signaling Using a Photocleavable Cobalt(III)–Nitrosyl Complex. Angewandte Chemie, 2019, 131, 10232-10237.	2.0	4
86	Synthesis and crystal structure of nickel(II) complexes with bis(5-methyl-2-thiophenemethyl)(2-pyridylmethyl)amine. Polyhedron, 2010, 29, 446-450.	2.2	3
87	Mechanistic insight into hydroxamate transfer reaction mimicking the inhibition of zinc-containing enzymes. Chemical Science, 2020, 11, 9017-9021.	7.4	2
88	Challenges of Measuring Soluble Mn(III) Species in Natural Samples. Molecules, 2022, 27, 1661.	3.8	2
89	Spectroscopic and Computational Studies of a 1/4-1-(sup>2:1-(sup>2-Disulfido-Bridged Dinickel(II) Species, [{(PhTt ^{tBu})Ni} ₂ (μ-Î-(sup>2:Î-(sup>2-S ₂)]: Comparison of Side-On Disulfido and Peroxo Bonding in (Ni ^{II})(sub>2and	4.0	1
90	(Cursup>ils/sup>)sub>2s/sub>2c/sub>Species.Inorganic.Chemistry, 2010, 49, 0110-0120. Frontispiece: Dinuclear Iron(III) and Nickel(II) Complexes Containing <i>Nâ€(</i> 2â€Pyridylmethyl)â€ <i>N</i> â€2â€(2â€hydroxyethyl)ethylenediamine: Catalytic Oxidation and Magn Properties. Chemistry - A European Journal, 2017, 23, .	etaca	0

#	Article	IF	CITATIONS
91	Oxidation of Naphthalene with a Manganese(IV) Bis(hydroxo) Complex in the Presence of Acid. Angewandte Chemie, 2018, 130, 7890-7894.	2.0	0