
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3694119/publications.pdf Version: 2024-02-01

LIANCZHU FENC

#	Article	IF	CITATIONS
1	Functional Nanomaterials for Phototherapies of Cancer. Chemical Reviews, 2014, 114, 10869-10939.	47.7	2,120
2	Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews, 2013, 42, 530-547.	38.1	1,483
3	Drug Delivery with PEGylated MoS ₂ Nanoâ€sheets for Combined Photothermal and Chemotherapy of Cancer. Advanced Materials, 2014, 26, 3433-3440.	21.0	1,072
4	Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide. ACS Nano, 2011, 5, 7000-7009.	14.6	987
5	Intelligent Albumin–MnO ₂ Nanoparticles as pHâ€/H ₂ O ₂ â€Responsive Dissociable Nanocarriers to Modulate Tumor Hypoxia for Effective Combination Therapy. Advanced Materials, 2016, 28, 7129-7136.	21.0	882
6	Graphene in biomedicine: opportunities and challenges. Nanomedicine, 2011, 6, 317-324.	3.3	636
7	A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research, 2012, 5, 199-212.	10.4	562
8	Graphene based gene transfection. Nanoscale, 2011, 3, 1252.	5.6	537
9	Ultrasound Triggered Tumor Oxygenation with Oxygen-Shuttle Nanoperfluorocarbon to Overcome Hypoxia-Associated Resistance in Cancer Therapies. Nano Letters, 2016, 16, 6145-6153.	9.1	509
10	H ₂ O ₂ -responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5343-5348.	7.1	445
11	Graphene Oxide–Silver Nanocomposite As a Highly Effective Antibacterial Agent with Species-Specific Mechanisms. ACS Applied Materials & Interfaces, 2013, 5, 3867-3874.	8.0	424
12	Synthesis of Hollow Biomineralized CaCO ₃ –Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity. Journal of the American Chemical Society, 2018, 140, 2165-2178.	13.7	396
13	Ultrasmall Oxygenâ€Deficient Bimetallic Oxide MnWO <i>_X</i> Nanoparticles for Depletion of Endogenous GSH and Enhanced Sonodynamic Cancer Therapy. Advanced Materials, 2019, 31, e1900730.	21.0	387
14	Polyethylene Glycol and Polyethylenimine Dualâ€Functionalized Nanoâ€Graphene Oxide for Photothermally Enhanced Gene Delivery. Small, 2013, 9, 1989-1997.	10.0	378
15	Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nature Biomedical Engineering, 2018, 2, 611-621.	22.5	374
16	Amplification of Tumor Oxidative Stresses with Liposomal Fenton Catalyst and Glutathione Inhibitor for Enhanced Cancer Chemotherapy and Radiotherapy. Nano Letters, 2019, 19, 805-815.	9.1	360
17	Theranostic Liposomes with Hypoxia-Activated Prodrug to Effectively Destruct Hypoxic Tumors Post-Photodynamic Therapy. ACS Nano, 2017, 11, 927-937.	14.6	358
18	Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Advanced Drug Delivery Reviews, 2016, 105, 228-241.	13.7	352

#	Article	IF	CITATIONS
19	Smart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced Photodynamic-Immunotherapy of Cancer. Nano Letters, 2018, 18, 2475-2484.	9.1	348
20	<i>In Vivo</i> Targeting and Imaging of Tumor Vasculature with Radiolabeled, Antibody-Conjugated Nanographene. ACS Nano, 2012, 6, 2361-2370.	14.6	318
21	Drug-Induced Self-Assembly of Modified Albumins as Nano-theranostics for Tumor-Targeted Combination Therapy. ACS Nano, 2015, 9, 5223-5233.	14.6	314
22	In vitro and in vivo behaviors of dextran functionalized graphene. Carbon, 2011, 49, 4040-4049.	10.3	305
23	Nanoscale Metal–Organic Particles with Rapid Clearance for Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Nano, 2016, 10, 2774-2781.	14.6	300
24	Preparation and functionalization of graphene nanocomposites for biomedical applications. Nature Protocols, 2013, 8, 2392-2403.	12.0	284
25	Hyaluronidase To Enhance Nanoparticle-Based Photodynamic Tumor Therapy. Nano Letters, 2016, 16, 2512-2521.	9.1	279
26	A Hypoxiaâ€Responsive Albuminâ€Based Nanosystem for Deep Tumor Penetration and Excellent Therapeutic Efficacy. Advanced Materials, 2019, 31, e1901513.	21.0	263
27	Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today, 2018, 21, 55-73.	11.9	259
28	The acidic tumor microenvironment: a target for smart cancer nano-theranostics. National Science Review, 2018, 5, 269-286.	9.5	250
29	Polydopamine Nanoparticles as a Versatile Molecular Loading Platform to Enable Imaging-guided Cancer Combination Therapy. Theranostics, 2016, 6, 1031-1042.	10.0	244
30	CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials, 2016, 110, 60-70.	11.4	227
31	Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials, 2017, 138, 13-21.	11.4	214
32	Antigen-Loaded Upconversion Nanoparticles for Dendritic Cell Stimulation, Tracking, and Vaccination in Dendritic Cell-Based Immunotherapy. ACS Nano, 2015, 9, 6401-6411.	14.6	204
33	Surface Coatingâ€Dependent Cytotoxicity and Degradation of Graphene Derivatives: Towards the Design of Nonâ€Toxic, Degradable Nanoâ€Graphene. Small, 2014, 10, 1544-1554.	10.0	201
34	Synthesis of CaCO3-Based Nanomedicine for Enhanced Sonodynamic Therapy via Amplification of Tumor Oxidative Stress. CheM, 2020, 6, 1391-1407.	11.7	199
35	Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy. Biomaterials, 2018, 162, 123-131.	11.4	196
36	G-Quadruplex-Based Nanoscale Coordination Polymers to Modulate Tumor Hypoxia and Achieve Nuclear-Targeted Drug Delivery for Enhanced Photodynamic Therapy. Nano Letters, 2018, 18, 6867-6875.	9.1	187

#	Article	IF	CITATIONS
37	Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for inÂvivo photothermal therapy and photoacoustic imaging. Biomaterials, 2018, 155, 103-111.	11.4	180
38	Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy. Journal of Controlled Release, 2017, 263, 79-89.	9.9	165
39	Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coordination Chemistry Reviews, 2016, 320-321, 100-117.	18.8	159
40	Cisplatinâ€Prodrugâ€Constructed Liposomes as a Versatile Theranostic Nanoplatform for Bimodal Imaging Guided Combination Cancer Therapy. Advanced Functional Materials, 2016, 26, 2207-2217.	14.9	159
41	Covalent Organic Polymers Based on Fluorinated Porphyrin as Oxygen Nanoshuttles for Tumor Hypoxia Relief and Enhanced Photodynamic Therapy. Advanced Functional Materials, 2018, 28, 1804901.	14.9	156
42	Nearâ€Infrared Absorbing Polymeric Nanoparticles as a Versatile Drug Carrier for Cancer Combination Therapy. Advanced Functional Materials, 2013, 23, 6059-6067.	14.9	150
43	Smart pHâ€Responsive Nanocarriers Based on Nanoâ€Graphene Oxide for Combined Chemo―and Photothermal Therapy Overcoming Drug Resistance. Advanced Healthcare Materials, 2014, 3, 1261-1271.	7.6	150
44	Lightâ€Responsive, Singletâ€Oxygenâ€Triggered Onâ€Demand Drug Release from Photosensitizerâ€Doped Mesoporous Silica Nanorods for Cancer Combination Therapy. Advanced Functional Materials, 2016, 26, 4722-4732.	14.9	141
45	Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials, 2018, 181, 81-91.	11.4	131
46	Platinum Nanoparticles to Enable Electrodynamic Therapy for Effective Cancer Treatment. Advanced Materials, 2019, 31, e1806803.	21.0	130
47	Liposomes co-loaded with metformin and chlorin e6 modulate tumor hypoxia during enhanced photodynamic therapy. Nano Research, 2017, 10, 1200-1212.	10.4	128
48	Near-infrared light activation of quenched liposomal Ce6 for synergistic cancer phototherapy with effective skin protection. Biomaterials, 2017, 127, 13-24.	11.4	124
49	Near-infrared light and glucose dual-responsive cascading hydroxyl radical generation for in situ gelation and effective breast cancer treatment. Biomaterials, 2020, 228, 119568.	11.4	121
50	Renalâ€Clearable PEGylated Porphyrin Nanoparticles for Imageâ€Guided Photodynamic Cancer Therapy. Advanced Functional Materials, 2017, 27, 1702928.	14.9	113
51	InÂvivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials, 2016, 104, 361-371.	11.4	110
52	The advancing uses of nano-graphene in drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 601-612.	5.0	104
53	Generation of Electrospun Nanofibers with Controllable Degrees of Crimping Through a Simple, Plasticizerâ€Based Treatment. Advanced Materials, 2015, 27, 2583-2588.	21.0	93
54	Functionalization of Graphene Oxide Generates a Unique Interface for Selective Serum Protein Interactions. ACS Applied Materials & Interfaces, 2013, 5, 1370-1377.	8.0	91

#	Article	IF	CITATIONS
55	Functionalized graphene oxide serves as a novel vaccine nano-adjuvant for robust stimulation of cellular immunity. Nanoscale, 2016, 8, 3785-3795.	5.6	87
56	Oxaliplatin-/NLG919 prodrugs-constructed liposomes for effective chemo-immunotherapy of colorectal cancer. Biomaterials, 2020, 255, 120190.	11.4	75
57	Nanoscale covalent organic polymers as a biodegradable nanomedicine for chemotherapy-enhanced photodynamic therapy of cancer. Nano Research, 2018, 11, 3244-3257.	10.4	74
58	One-pot synthesis of pH-responsive charge-switchable PEGylated nanoscale coordination polymers for improved cancer therapy. Biomaterials, 2018, 156, 121-133.	11.4	73
59	Tumor-killing nanoreactors fueled by tumor debris can enhance radiofrequency ablation therapy and boost antitumor immune responses. Nature Communications, 2021, 12, 4299.	12.8	72
60	Multilayer Dual-Polymer-Coated Upconversion Nanoparticles for Multimodal Imaging and Serum-Enhanced Gene Delivery. ACS Applied Materials & Interfaces, 2013, 5, 10381-10388.	8.0	67
61	Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures. Nano Research, 2016, 9, 139-148.	10.4	64
62	Comparison of nanomedicine-based chemotherapy, photodynamic therapy and photothermal therapy using reduced graphene oxide for the model system. Biomaterials Science, 2017, 5, 331-340.	5.4	63
63	Re-assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles. Biomaterials, 2016, 100, 101-109.	11.4	61
64	Long circulating reduced graphene oxide–iron oxide nanoparticles for efficient tumor targeting and multimodality imaging. Nanoscale, 2016, 8, 12683-12692.	5.6	58
65	Nanoparticle-mediated internal radioisotope therapy to locally increase the tumor vasculature permeability for synergistically improved cancer therapies. Biomaterials, 2019, 197, 368-379.	11.4	58
66	Perfluorocarbon loaded fluorinated covalent organic polymers with effective sonosensitization and tumor hypoxia relief enable synergistic sonodynamic-immunotherapy. Biomaterials, 2022, 280, 121250.	11.4	57
67	Coordination Polymerâ€Coated CaCO ₃ Reinforces Radiotherapy by Reprogramming the Immunosuppressive Metabolic Microenvironment. Advanced Materials, 2022, 34, e2106520.	21.0	54
68	Photosensitizer Decorated Red Blood Cells as an Ultrasensitive Light-Responsive Drug Delivery System. ACS Applied Materials & Interfaces, 2017, 9, 5855-5863.	8.0	53
69	Accelerated Blood Clearance Phenomenon Reduces the Passive Targeting of PEGylated Nanoparticles in Peripheral Arterial Disease. ACS Applied Materials & amp; Interfaces, 2016, 8, 17955-17963.	8.0	48
70	lodine-131-labeled, transferrin-capped polypyrrole nanoparticles for tumor-targeted synergistic photothermal-radioisotope therapy. Biomaterials Science, 2017, 5, 1828-1835.	5.4	48
71	Surfactantâ€6tripped Micelles of Near Infrared Dye and Paclitaxel for Photoacoustic Imaging Guided Photothermal hemotherapy. Small, 2018, 14, e1802991.	10.0	47
72	Ultrasound-Responsive Conversion of Microbubbles to Nanoparticles to Enable Background-Free in Vivo Photoacoustic Imaging. Nano Letters, 2019, 19, 8109-8117.	9.1	47

#	Article	IF	CITATIONS
73	Fabrication of H ₂ O ₂ -driven nanoreactors for innovative cancer treatments. Nanoscale, 2019, 11, 16164-16186.	5.6	46
74	CaCO3-Assisted Preparation of pH-Responsive Immune-Modulating Nanoparticles for Augmented Chemo-Immunotherapy. Nano-Micro Letters, 2021, 13, 29.	27.0	46
75	Core–shell TaOx@MnO ₂ nanoparticles as a nano-radiosensitizer for effective cancer radiotherapy. Journal of Materials Chemistry B, 2018, 6, 2250-2257.	5.8	45
76	Metal-polyphenol-network coated CaCO3 as pH-responsive nanocarriers to enable effective intratumoral penetration and reversal of multidrug resistance for augmented cancer treatments. Nano Research, 2020, 13, 3057-3067.	10.4	40
77	Platinum nanoworms for imaging-guided combined cancer therapy in the second near-infrared window. Journal of Materials Chemistry B, 2018, 6, 5069-5079.	5.8	39
78	Patterned Substrates of Nano-Graphene Oxide Mediating Highly Localized and Efficient Gene Delivery. ACS Applied Materials & Interfaces, 2014, 6, 5900-5907.	8.0	36
79	Graphene Oxide Selectively Enhances Thermostability of Trypsin. ACS Applied Materials & Interfaces, 2015, 7, 12270-12277.	8.0	35
80	Red-blood-cell-membrane-enveloped magnetic nanoclusters as a biomimetic theranostic nanoplatform for bimodal imaging-guided cancer photothermal therapy. Journal of Materials Chemistry B, 2020, 8, 803-812.	5.8	35
81	Dualâ€Polymerâ€Functionalized Nanoscale Graphene Oxide as a Highly Effective Gene Transfection Agent for Insect Cells with Cellâ€Typeâ€Dependent Cellular Uptake Mechanisms. Particle and Particle Systems Characterization, 2013, 30, 794-803.	2.3	34
82	Reactive Oxygen Speciesâ€Scavenging Scaffold with Rapamycin for Treatment of Intervertebral Disk Degeneration. Advanced Healthcare Materials, 2020, 9, e1901186.	7.6	33
83	Hybrid Protein Nanoâ€Reactors Enable Simultaneous Increments of Tumor Oxygenation and Iodineâ€131 Delivery for Enhanced Radionuclide Therapy. Small, 2019, 15, e1903628.	10.0	32
84	Ferrous ions doped calcium carbonate nanoparticles potentiate chemotherapy by inducing ferroptosis. Journal of Controlled Release, 2022, 348, 346-356.	9.9	31
85	Supramolecular self-assembly enhanced europium(iii) luminescence under visible light. Soft Matter, 2014, 10, 4686.	2.7	29
86	Intratumoral delivery of M-CSF by calcium crosslinked polymer micelles enhances cancer immunotherapy. Biomaterials Science, 2019, 7, 2769-2776.	5.4	26
87	Surfactant-stripped J-aggregates of azaBODIPY derivatives: All-in-one phototheranostics in the second near infrared window. Journal of Controlled Release, 2020, 326, 256-264.	9.9	26
88	Protein-drug conjugate programmed by pH-reversible linker for tumor hypoxia relief and enhanced cancer combination therapy. International Journal of Pharmaceutics, 2020, 582, 119321.	5.2	26
89	Perfluorocarbon nanodroplets stabilized with cisplatin-prodrug-constructed lipids enable efficient tumor oxygenation and chemo-radiotherapy of cancer. Nanoscale, 2020, 12, 14764-14774.	5.6	25
90	Immunogenic nanomedicine based on GSH-responsive nanoscale covalent organic polymers for chemo-sonodynamic therapy. Biomaterials, 2022, 283, 121428.	11.4	25

#	Article	IF	CITATIONS
91	Construction of Enzyme Nanoreactors to Enable Tumor Microenvironment Modulation and Enhanced Cancer Treatment. Advanced Healthcare Materials, 2021, 10, e2001167.	7.6	23
92	The advantage of reversible coordination polymers in producing visible light sensitized Eu(iii) emissions over EDTA via excluding water from the coordination sphere. Physical Chemistry Chemical Physics, 2013, 15, 16641.	2.8	20
93	Seeded Growth of Cu _{2–<i>x</i>} Se Nanocrystals and Their Size-Dependent Phototherapeutic Effect. ACS Applied Nano Materials, 2018, 1, 3303-3311.	5.0	19
94	Photodynamic creation of artificial tumor microenvironments to collectively facilitate hypoxia-activated chemotherapy delivered by coagulation-targeting liposomes. Chemical Engineering Journal, 2021, 414, 128731.	12.7	18
95	MSCs-engineered biomimetic PMAA nanomedicines for multiple bioimaging-guided and photothermal-enhanced radiotherapy of NSCLC. Journal of Nanobiotechnology, 2021, 19, 80.	9.1	17
96	Functionalized graphene oxide triggers cell cycle checkpoint control through both the ATM and the ATR signaling pathways. Carbon, 2018, 129, 495-503.	10.3	15
97	CaCO ₃ â€Encapuslated Microspheres for Enhanced Transhepatic Arterial Embolization Treatment of Hepatocellular Carcinoma. Advanced Healthcare Materials, 2021, 10, e2100748.	7.6	15
98	Phenolic molecules constructed nanomedicine for innovative cancer treatment. Coordination Chemistry Reviews, 2021, 439, 213912.	18.8	15
99	Molecular domino reactor built by automated modular synthesis for cancer treatment. Theranostics, 2020, 10, 4030-4041.	10.0	14
100	Synthesis of a UCNPs@SiO ₂ @gadofullerene nanocomposite and its application in UCL/MR bimodal imaging. RSC Advances, 2016, 6, 98968-98974.	3.6	13
101	Lipid-Coated CaCO ₃ Nanoparticles as a Versatile pH-Responsive Drug Delivery Platform to Enable Combined Chemotherapy of Breast Cancer. ACS Applied Bio Materials, 2022, 5, 1194-1201.	4.6	13
102	Percutaneous implantation of ethanol fueled catalytic hydrogel suppresses tumor growth by triggering ferroptosis. Materials Today, 2022, 55, 7-20.	14.2	12
103	pH-responsive nanomedicine co-encapsulated with Erlotinib and chlorin e6 can enable effective treatment of triple negative breast cancer via reprogramming tumor vasculature. Chemical Engineering Journal, 2022, 437, 135305.	12.7	11
104	Lipid-coated CaCO ₃ -PDA nanoparticles as a versatile nanocarrier to enable pH-responsive dual modal imaging-guided combination cancer therapy. Journal of Materials Chemistry B, 2022, 10, 4096-4104.	5.8	4