List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3692191/publications.pdf Version: 2024-02-01

		36303	62596
84	14,498	51	80
papers	citations	h-index	g-index
122	122	122	15702
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Unlocking the secrets to Janus kinase activation. Science, 2022, 376, 139-140.	12.6	2
2	Increased resistance of SARS-CoV-2 Omicron variant to neutralization by vaccine-elicited and therapeutic antibodies. EBioMedicine, 2022, 78, 103944.	6.1	119
3	Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science, 2020, 367, 643-652.	12.6	123
4	KRAS4A directly regulates hexokinase 1. Nature, 2019, 576, 482-486.	27.8	129
5	Janus kinase 2 activation mechanisms revealed by analysis of suppressing mutations. Journal of Allergy and Clinical Immunology, 2019, 143, 1549-1559.e6.	2.9	21
6	New Paradigms for the Mechanisms of Thrombopoietin Receptor Activation and Dysregulation By the JAK2V617F Mutation. Blood, 2019, 134, 2962-2962.	1.4	0
7	Crystal structure of the C-terminal four-helix bundle of the potassium channel KCa3.1. PLoS ONE, 2018, 13, e0199942.	2.5	6
8	Mechanistic Insights into Regulation of JAK2 Tyrosine Kinase. Frontiers in Endocrinology, 2017, 8, 361.	3.5	69
9	Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1. ELife, 2016, 5, .	6.0	46
10	Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. Journal of Clinical Investigation, 2016, 126, 4361-4371.	8.2	173
11	Molecular insights into regulation of JAK2 in myeloproliferative neoplasms. Blood, 2015, 125, 3388-3392.	1.4	65
12	Proteasomal Control of Cytokinin Synthesis Protects Mycobacterium tuberculosis against Nitric Oxide. Molecular Cell, 2015, 57, 984-994.	9.7	101
13	Targeting the Inactive Conformation of JAK2 in Hematological Malignancies. Cancer Cell, 2015, 28, 1-2.	16.8	21
14	ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation. Proceedings of the United States of America, 2015, 112, 4642-4647.	7.1	95
15	The insulin and IGF1 receptor kinase domains are functional dimers in the activated state. Nature Communications, 2015, 6, 6406.	12.8	60
16	The MuSK Receptor Family. , 2015, , 359-372.		1
17	IRAK4 Activation: A Cautious Embrace. Molecular Cell, 2014, 55, 805-806.	9.7	2
18	Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase. Nature Structural and Molecular Biology, 2014, 21, 579-584.	8.2	132

STEVAN R HUBBARD

#	Article	IF	CITATIONS
19	A DNA Sequence Recognition Loop on APOBEC3A Controls Substrate Specificity. PLoS ONE, 2014, 9, e97062.	2.5	42
20	Closing in on a mechanism for activation. ELife, 2014, 3, .	6.0	4
21	Structure and activation of MuSK, a receptor tyrosine kinase central to neuromuscular junction formation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2166-2169.	2.3	38
22	Insulin meets its receptor. Nature, 2013, 493, 171-172.	27.8	13
23	The Insulin Receptor: Both a Prototypical and Atypical Receptor Tyrosine Kinase. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008946-a008946.	5.5	116
24	New insights into the structure and function of the pseudokinase domain in JAK2. Biochemical Society Transactions, 2013, 41, 1002-1007.	3.4	35
25	Structural Basis for the Interaction of the Adaptor Protein Grb14 with Activated Ras. PLoS ONE, 2013, 8, e72473.	2.5	23
26	Mycobacterium tuberculosis Prokaryotic Ubiquitin-like Protein-deconjugating Enzyme Is an Unusual Aspartate Amidase. Journal of Biological Chemistry, 2012, 287, 37522-37529.	3.4	20
27	Rap1-interacting adapter molecule (RIAM) associates with the plasma membrane via a proximity detector. Journal of Cell Biology, 2012, 199, 317-329.	5.2	54
28	Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nature Structural and Molecular Biology, 2012, 19, 754-759.	8.2	196
29	The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nature Structural and Molecular Biology, 2011, 18, 971-976.	8.2	237
30	Structure-Guided Identification of a Laminin Binding Site on the Laminin Receptor Precursor. Journal of Molecular Biology, 2011, 405, 24-32.	4.2	22
31	Cytokine Signaling Exposed. Structure, 2011, 19, 1-2.	3.3	3
32	Agrin Binds to the N-terminal Region of Lrp4 Protein and Stimulates Association between Lrp4 and the First Immunoglobulin-like Domain in Muscle-specific Kinase (MuSK). Journal of Biological Chemistry, 2011, 286, 40624-40630.	3.4	123
33	Molecular analysis of the prokaryotic ubiquitin-like protein (Pup) conjugation pathway in Mycobacterium tuberculosis. Molecular Microbiology, 2010, 77, 1123-1135.	2.5	90
34	The Cytoplasmic Adaptor Protein Dok7 Activates the Receptor Tyrosine Kinase MuSK via Dimerization. Molecular Cell, 2010, 39, 100-109.	9.7	109
35	Structural and functional studies of the Ras-associating and pleckstrin-homology domains of Grb10 and Grb14. Nature Structural and Molecular Biology, 2009, 16, 833-839.	8.2	66
36	The Juxtamembrane Region of EGFR Takes Center Stage. Cell, 2009, 137, 1181-1183.	28.9	22

#	Article	IF	CITATIONS
37	Crystal Structure of the Frizzled-Like Cysteine-Rich Domain of the Receptor Tyrosine Kinase MuSK. Journal of Molecular Biology, 2009, 393, 1-9.	4.2	63
38	Small-molecule inhibition and activation-loop trans-phosphorylation of the IGF1 receptor. EMBO Journal, 2008, 27, 1985-1994.	7.8	75
39	Structural and biochemical characterization of the KRLB region in insulin receptor substrate-2. Nature Structural and Molecular Biology, 2008, 15, 251-258.	8.2	94
40	How IRE1 Reacts to ER Stress. Cell, 2008, 132, 24-26.	28.9	209
41	Lrp4 Is a Receptor for Agrin and Forms a Complex with MuSK. Cell, 2008, 135, 334-342.	28.9	572
42	Crystal Structure of the Human Laminin Receptor Precursor. Journal of Biological Chemistry, 2008, 283, 3002-3005.	3.4	46
43	Receptor tyrosine kinases: mechanisms of activation and signaling. Current Opinion in Cell Biology, 2007, 19, 117-123.	5.4	388
44	EGF Receptor Activation: Push Comes to Shove. Cell, 2006, 125, 1029-1031.	28.9	24
45	Structural Basis for Phosphotyrosine Recognition by the Src Homology-2 Domains of the Adapter Proteins SH2-B and APS. Journal of Molecular Biology, 2006, 361, 69-79.	4.2	32
46	Crystal Structure of the Agrin-responsive Immunoglobulin-like Domains 1 and 2 of the Receptor Tyrosine Kinase MuSK. Journal of Molecular Biology, 2006, 364, 424-433.	4.2	61
47	Structural Basis for Phosphotyrosine Recognition by Suppressor of Cytokine Signaling-3. Structure, 2006, 14, 1285-1292.	3.3	48
48	Bisubstrate analog probes for the insulin receptor protein tyrosine kinase: Molecular yardsticks for analyzing catalytic mechanism and inhibitor design. Bioorganic Chemistry, 2005, 33, 285-297.	4.1	25
49	EGF receptor inhibition: Attacks on multiple fronts. Cancer Cell, 2005, 7, 287-288.	16.8	40
50	Crystal Structure of a Complex between Protein Tyrosine Phosphatase 1B and the Insulin Receptor Tyrosine Kinase. Structure, 2005, 13, 1643-1651.	3.3	43
51	Structural Characterization of a Novel Cbl Phosphotyrosine Recognition Motif in the APS Family of Adapter Proteins. Journal of Biological Chemistry, 2005, 280, 18943-18949.	3.4	70
52	Structural Basis for Inhibition of the Insulin Receptor by the Adaptor Protein Grb14. Molecular Cell, 2005, 20, 325-333.	9.7	105
53	Juxtamembrane autoinhibition in receptor tyrosine kinases. Nature Reviews Molecular Cell Biology, 2004, 5, 464-471.	37.0	264
54	Oncogenic Mutations in B-Raf. Cell, 2004, 116, 764-766.	28.9	28

#	Article	IF	CITATIONS
55	Agrin / MuSK signaling: willing and Abl. Nature Neuroscience, 2003, 6, 653-654.	14.8	14
56	Structural Basis for Dimerization of the Grb10 Src Homology 2 Domain. Journal of Biological Chemistry, 2003, 278, 13257-13264.	3.4	56
57	Structural Basis for Recruitment of the Adaptor Protein APS to the Activated Insulin Receptor. Molecular Cell, 2003, 12, 1379-1389.	9.7	113
58	Structural and Biochemical Evidence for an Autoinhibitory Role for Tyrosine 984 in the Juxtamembrane Region of the Insulin Receptor. Journal of Biological Chemistry, 2003, 278, 26007-26014.	3.4	55
59	Autoinhibitory mechanisms in receptor tyrosine kinases. Frontiers in Bioscience - Landmark, 2002, 7, d330-340.	3.0	35
60	Crystal Structure of the MuSK Tyrosine Kinase. Structure, 2002, 10, 1187-1196.	3.3	122
61	Protein tyrosine kinases: autoregulation and small-molecule inhibition. Current Opinion in Structural Biology, 2002, 12, 735-741.	5.7	72
62	IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature, 2002, 415, 92-96.	27.8	2,452
63	Theme and Variations. Molecular Cell, 2001, 8, 481-482.	9.7	37
64	The BPS domain of Grb10 inhibits the catalytic activity of the insulin and IGF1 receptors. FEBS Letters, 2001, 493, 106-111.	2.8	81
65	Mechanism-based design of a protein kinase inhibitor. Nature Structural Biology, 2001, 8, 37-41.	9.7	185
66	Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nature Structural Biology, 2001, 8, 1058-1063.	9.7	308
67	Crystallographic and Solution Studies of an Activation Loop Mutant of the Insulin Receptor Tyrosine Kinase. Journal of Biological Chemistry, 2001, 276, 10049-10055.	3.4	69
68	Probing the Catalytic Mechanism of the Insulin Receptor Kinase with a Tetrafluorotyrosine-containing Peptide Substrate. Journal of Biological Chemistry, 2000, 275, 30394-30398.	3.4	30
69	Protein Tyrosine Kinase Structure and Function. Annual Review of Biochemistry, 2000, 69, 373-398.	11.1	996
70	Crystal Structures of Two FGF-FGFR Complexes Reveal the Determinants of Ligand-Receptor Specificity. Cell, 2000, 101, 413-424.	28.9	370
71	Src autoinhibition: let us count the ways. , 1999, 6, 711-714.		50
72	Alternative splicing, gene localization, and binding of SH2-B to the insulin receptor kinase domain. Mammalian Genome, 1999, 10, 1160-1167.	2.2	70

#	Article	IF	CITATIONS
73	Structural analysis of receptor tyrosine kinases. Progress in Biophysics and Molecular Biology, 1999, 71, 343-358.	2.9	181
74	Structural Basis for FGF Receptor Dimerization and Activation. Cell, 1999, 98, 641-650.	28.9	575
75	Autoregulatory Mechanisms in Protein-tyrosine Kinases. Journal of Biological Chemistry, 1998, 273, 11987-11990.	3.4	262
76	Structures of the Tyrosine Kinase Domain of Fibroblast Growth Factor Receptor in Complex with Inhibitors. Science, 1997, 276, 955-960.	12.6	1,047
77	Structure of the FGF Receptor Tyrosine Kinase Domain Reveals a Novel Autoinhibitory Mechanism. Cell, 1996, 86, 577-587.	28.9	378
78	[13] Characterization of the cysteine-rich zinc-binding domains of protein kinase C by X-ray absorption spectroscopy. Methods in Enzymology, 1995, 252, 123-132.	1.0	0
79	Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature, 1995, 373, 536-539.	27.8	932
80	Expression, Characterization, and Crystallization of the Catalytic Core of the Human Insulin Receptor Protein-tyrosine Kinase Domain. Journal of Biological Chemistry, 1995, 270, 8122-8130.	3.4	114
81	Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature, 1994, 372, 746-754.	27.8	1,105
82	X-ray crystal structure of a recombinant human myoglobin mutant at 2·8 à resolution. Journal of Molecular Biology, 1990, 213, 215-218.	4.2	87
83	Anomalous small-angle x-ray scattering from a sulfonated polystyrene ionomer. Macromolecules, 1988, 21, 1698-1703.	4.8	113
84	IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. , 0, .		1