
## Ralph J Deberardinis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3691162/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.                                                                               | 11.2 | 4,036     |
| 2  | The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation. Cell Metabolism, 2008, 7, 11-20.                                                                                                                   | 16.2 | 3,421     |
| 3  | Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of America, 2007, 104, 19345-19350. | 7.1  | 2,127     |
| 4  | Fundamentals of cancer metabolism. Science Advances, 2016, 2, e1600200.                                                                                                                                                                | 10.3 | 2,039     |
| 5  | Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to<br>glutamine addiction. Proceedings of the National Academy of Sciences of the United States of America,<br>2008, 105, 18782-18787.  | 7.1  | 1,655     |
| 6  | Understanding the Intersections between Metabolism and Cancer Biology. Cell, 2017, 168, 657-669.                                                                                                                                       | 28.9 | 1,561     |
| 7  | Metabolic pathways promoting cancer cell survival and growth. Nature Cell Biology, 2015, 17, 351-359.                                                                                                                                  | 10.3 | 1,142     |
| 8  | Role of PFKFB3-Driven Glycolysis in Vessel Sprouting. Cell, 2013, 154, 651-663.                                                                                                                                                        | 28.9 | 1,117     |
| 9  | Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature, 2012, 481, 385-388.                                                                                                                       | 27.8 | 1,074     |
| 10 | Metabolic reprogramming and cancer progression. Science, 2020, 368, .                                                                                                                                                                  | 12.6 | 1,054     |
| 11 | Toll-like receptor–induced changes in glycolytic metabolism regulate dendritic cell activation.<br>Blood, 2010, 115, 4742-4749.                                                                                                        | 1.4  | 998       |
| 12 | Glutamine and cancer: cell biology, physiology, and clinical opportunities. Journal of Clinical<br>Investigation, 2013, 123, 3678-3684.                                                                                                | 8.2  | 965       |
| 13 | Oxidative stress inhibits distant metastasis by human melanoma cells. Nature, 2015, 527, 186-191.                                                                                                                                      | 27.8 | 964       |
| 14 | High Frequency Retrotransposition in Cultured Mammalian Cells. Cell, 1996, 87, 917-927.                                                                                                                                                | 28.9 | 950       |
| 15 | The Distinct Metabolic Profile of Hematopoietic Stem Cells Reflects Their Location in a Hypoxic Niche.<br>Cell Stem Cell, 2010, 7, 380-390.                                                                                            | 11.1 | 904       |
| 16 | Brick by brick: metabolism and tumor cell growth. Current Opinion in Genetics and Development, 2008, 18, 54-61.                                                                                                                        | 3.3  | 899       |
| 17 | Lactate Metabolism in Human Lung Tumors. Cell, 2017, 171, 358-371.e9.                                                                                                                                                                  | 28.9 | 899       |
| 18 | Systemic Treatment with the Antidiabetic Drug Metformin Selectively Impairs p53-Deficient Tumor Cell<br>Growth, Cancer Research, 2007, 67, 6745-6752.                                                                                  | 0.9  | 835       |

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Metabolic Heterogeneity in Human Lung Tumors. Cell, 2016, 164, 681-694.                                                                                                                  | 28.9 | 830       |
| 20 | AMPK Is a Negative Regulator of the Warburg Effect and Suppresses Tumor Growth InÂVivo. Cell<br>Metabolism, 2013, 17, 113-124.                                                           | 16.2 | 754       |
| 21 | Autophagy in metazoans: cell survival in the land of plenty. Nature Reviews Molecular Cell Biology, 2005, 6, 439-448.                                                                    | 37.0 | 712       |
| 22 | 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nature Medicine, 2012, 18, 624-629.                                                | 30.7 | 711       |
| 23 | A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nature Materials, 2014, 13, 204-212.                   | 27.5 | 695       |
| 24 | Cellular Metabolism and Disease: What Do Metabolic Outliers Teach Us?. Cell, 2012, 148, 1132-1144.                                                                                       | 28.9 | 684       |
| 25 | Analysis of Cancer Metabolism by Imaging Hyperpolarized Nuclei: Prospects for Translation to Clinical Research. Neoplasia, 2011, 13, 81-97.                                              | 5.3  | 623       |
| 26 | Acetate Is a Bioenergetic Substrate for Human Glioblastoma and Brain Metastases. Cell, 2014, 159, 1603-1614.                                                                             | 28.9 | 594       |
| 27 | Exon Shuffling by L1 Retrotransposition. Science, 1999, 283, 1530-1534.                                                                                                                  | 12.6 | 589       |
| 28 | Hypoxia induces heart regeneration in adult mice. Nature, 2017, 541, 222-227.                                                                                                            | 27.8 | 566       |
| 29 | A roadmap for interpreting 13 C metabolite labeling patterns from cells. Current Opinion in<br>Biotechnology, 2015, 34, 189-201.                                                         | 6.6  | 513       |
| 30 | Glutamine Oxidation Maintains the TCA Cycle and Cell Survival during Impaired Mitochondrial<br>Pyruvate Transport. Molecular Cell, 2014, 56, 414-424.                                    | 9.7  | 504       |
| 31 | We need to talk about the Warburg effect. Nature Metabolism, 2020, 2, 127-129.                                                                                                           | 11.9 | 476       |
| 32 | Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature, 2016, 532, 255-258.                                                                      | 27.8 | 472       |
| 33 | Analysis of Tumor Metabolism Reveals Mitochondrial Glucose Oxidation in Genetically Diverse Human<br>Glioblastomas in the Mouse Brain InÂVivo. Cell Metabolism, 2012, 15, 827-837.       | 16.2 | 459       |
| 34 | Many human L1 elements are capable of retrotransposition. Nature Genetics, 1997, 16, 37-43.                                                                                              | 21.4 | 451       |
| 35 | Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature, 2011, 477, 225-228.                                                                        | 27.8 | 433       |
| 36 | Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8674-8679. | 7.1  | 411       |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature, 2017, 549, 476-481.                                                                                             | 27.8 | 398       |
| 38 | TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions.<br>Molecular Cell, 2016, 61, 199-209.                                                               | 9.7  | 396       |
| 39 | Glioblastoma Cells Require Glutamate Dehydrogenase to Survive Impairments of Glucose Metabolism<br>or Akt Signaling. Cancer Research, 2009, 69, 7986-7993.                                         | 0.9  | 362       |
| 40 | Mechanisms and Implications of Metabolic Heterogeneity in Cancer. Cell Metabolism, 2019, 30, 434-446.                                                                                              | 16.2 | 355       |
| 41 | The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid Î <sup>2</sup> -oxidation. Oncogene, 2005, 24, 4165-4173.                                | 5.9  | 342       |
| 42 | The transcription factor HIF-11 <sup>±</sup> plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes and Development, 2007, 21, 1037-1049. | 5.9  | 340       |
| 43 | Phosphoglycerate Mutase 1 Coordinates Glycolysis and Biosynthesis to Promote Tumor Growth.<br>Cancer Cell, 2012, 22, 585-600.                                                                      | 16.8 | 329       |
| 44 | Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 2020, 578, 621-626.                                                                                                     | 27.8 | 327       |
| 45 | Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature, 2019, 566, 403-406.                                                                              | 27.8 | 326       |
| 46 | Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature, 2020, 577,<br>115-120.                                                                                       | 27.8 | 298       |
| 47 | A Role for the Mitochondrial Pyruvate Carrier as a Repressor of the Warburg Effect and Colon<br>Cancer Cell Growth. Molecular Cell, 2014, 56, 400-413.                                             | 9.7  | 294       |
| 48 | Metabolism of [Uâ€ <sup>13</sup> C]glucose in human brain tumors <i>in vivo</i> . NMR in Biomedicine,<br>2012, 25, 1234-1244.                                                                      | 2.8  | 282       |
| 49 | Oxidation of Alpha-Ketoglutarate Is Required for Reductive Carboxylation in Cancer Cells with<br>Mitochondrial Defects. Cell Reports, 2014, 7, 1679-1690.                                          | 6.4  | 281       |
| 50 | Mitochondrial Reactive Oxygen Species Promote Epidermal Differentiation and Hair Follicle<br>Development. Science Signaling, 2013, 6, ra8.                                                         | 3.6  | 276       |
| 51 | Human Enteric Defensins. Journal of Biological Chemistry, 1996, 271, 4038-4045.                                                                                                                    | 3.4  | 272       |
| 52 | Glutamate Dehydrogenase 1 Signals through Antioxidant Glutathione Peroxidase 1 to Regulate Redox<br>Homeostasis and Tumor Growth. Cancer Cell, 2015, 27, 257-270.                                  | 16.8 | 269       |
| 53 | The Gut Commensal Bacteroides thetaiotaomicron Exacerbates Enteric Infection through<br>Modification of the Metabolic Landscape. Cell Host and Microbe, 2014, 16, 759-769.                         | 11.0 | 255       |
| 54 | Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Research, 2000, 28, 1418-1423.                                                                                    | 14.5 | 253       |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Lipoic acid metabolism and mitochondrial redox regulation. Journal of Biological Chemistry, 2018, 293, 7522-7530.                                                                                                               | 3.4  | 251       |
| 56 | Metabolic Profiling Using Stable Isotope Tracing Reveals Distinct Patterns of Glucose Utilization by Physiologically Activated CD8+ T Cells. Immunity, 2019, 51, 856-870.e5.                                                    | 14.3 | 250       |
| 57 | The Proto-oncometabolite Fumarate Binds Glutathione to Amplify ROS-Dependent Signaling.<br>Molecular Cell, 2013, 51, 236-248.                                                                                                   | 9.7  | 244       |
| 58 | Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism.<br>Nature Cell Biology, 2017, 19, 1027-1036.                                                                                   | 10.3 | 238       |
| 59 | Molecular Profiling Reveals Unique Immune and Metabolic Features of Melanoma Brain Metastases.<br>Cancer Discovery, 2019, 9, 628-645.                                                                                           | 9.4  | 231       |
| 60 | 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting<br>LKB1–AMPK signalling. Nature Cell Biology, 2015, 17, 1484-1496.                                                            | 10.3 | 224       |
| 61 | CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature, 2017, 546, 168-172.                                                                                                            | 27.8 | 222       |
| 62 | Fatty Acid Oxidation Mediated by Acyl-CoA Synthetase Long Chain 3 Is Required for Mutant KRAS Lung<br>Tumorigenesis. Cell Reports, 2016, 16, 1614-1628.                                                                         | 6.4  | 205       |
| 63 | PEPCK Coordinates the Regulation of Central Carbon Metabolism to Promote Cancer Cell Growth.<br>Molecular Cell, 2015, 60, 571-583.                                                                                              | 9.7  | 202       |
| 64 | LKB1 and KEAP1/NRF2 Pathways Cooperatively Promote Metabolic Reprogramming with Enhanced<br>Glutamine Dependence in <i>KRAS</i> -Mutant Lung Adenocarcinoma. Cancer Research, 2019, 79,<br>3251-3267.                           | 0.9  | 196       |
| 65 | Isotope Tracing of Human Clear Cell Renal Cell Carcinomas Demonstrates Suppressed Glucose<br>Oxidation InÂVivo. Cell Metabolism, 2018, 28, 793-800.e2.                                                                          | 16.2 | 193       |
| 66 | ls cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genetics in Medicine,<br>2008, 10, 767-777.                                                                                                     | 2.4  | 192       |
| 67 | Phosphatidylinositol 3-Kinase-dependent Modulation of Carnitine Palmitoyltransferase 1A Expression<br>Regulates Lipid Metabolism during Hematopoietic Cell Growth*. Journal of Biological Chemistry, 2006,<br>281, 37372-37380. | 3.4  | 191       |
| 68 | A mouse model of human L1 retrotransposition. Nature Genetics, 2002, 32, 655-660.                                                                                                                                               | 21.4 | 189       |
| 69 | MCT4 Defines a Glycolytic Subtype of Pancreatic Cancer with Poor Prognosis and Unique Metabolic Dependencies. Cell Reports, 2014, 9, 2233-2249.                                                                                 | 6.4  | 182       |
| 70 | Metabolic regulation of transcription through compartmentalized NAD <sup>+</sup> biosynthesis.<br>Science, 2018, 360, .                                                                                                         | 12.6 | 182       |
| 71 | Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nature Medicine, 2015, 21, 1182-1189.                                                                               | 30.7 | 180       |
| 72 | Tumor Microenvironment, Metabolism, and Immunotherapy. New England Journal of Medicine, 2020,<br>382, 869-871.                                                                                                                  | 27.0 | 179       |

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Metformin Antagonizes Cancer Cell Proliferation by Suppressing Mitochondrial-Dependent<br>Biosynthesis. PLoS Biology, 2015, 13, e1002309.                                            | 5.6  | 176       |
| 74 | The G Protein-Coupled Taste Receptor T1R1/T1R3 Regulates mTORC1 and Autophagy. Molecular Cell, 2012, 47, 851-862.                                                                    | 9.7  | 160       |
| 75 | Glutamine: pleiotropic roles in tumor growth and stress resistance. Journal of Molecular Medicine, 2011, 89, 229-236.                                                                | 3.9  | 156       |
| 76 | Systematic Identification of Molecular Subtype-Selective Vulnerabilities in Non-Small-Cell Lung<br>Cancer. Cell, 2013, 155, 552-566.                                                 | 28.9 | 151       |
| 77 | Metabolic strategies of melanoma cells: Mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell and Melanoma Research, 2018, 31, 11-30. | 3.3  | 149       |
| 78 | Rapid amplification of a retrotransposon subfamily is evolving the mouse genome. Nature Genetics,<br>1998, 20, 288-290.                                                              | 21.4 | 144       |
| 79 | Inosine Monophosphate Dehydrogenase Dependence in a Subset of Small Cell Lung Cancers. Cell<br>Metabolism, 2018, 28, 369-382.e5.                                                     | 16.2 | 136       |
| 80 | Autophagy Regulation of Metabolism Is Required for CD8+ T Cell Anti-tumor Immunity. Cell Reports, 2019, 27, 502-513.e5.                                                              | 6.4  | 134       |
| 81 | Applications of metabolomics to study cancer metabolism. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 2-14.                                                         | 7.4  | 129       |
| 82 | MYC promotes tryptophan uptake and metabolism by the kynurenine pathway in colon cancer. Genes and Development, 2019, 33, 1236-1251.                                                 | 5.9  | 127       |
| 83 | Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated proteinÂtranslation.<br>Nature Cell Biology, 2017, 19, 626-638.                                          | 10.3 | 126       |
| 84 | Cytochrome c Oxidase Activity Is a Metabolic Checkpoint that Regulates Cell Fate Decisions During T<br>Cell Activation and Differentiation. Cell Metabolism, 2017, 25, 1254-1268.e7. | 16.2 | 125       |
| 85 | Metabolic Diversity in Human Non-Small Cell Lung Cancer Cells. Molecular Cell, 2019, 76, 838-851.e5.                                                                                 | 9.7  | 119       |
| 86 | Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nature Medicine, 2018, 24, 617-627.                                   | 30.7 | 117       |
| 87 | MYC-Driven Small-Cell Lung Cancer is Metabolically Distinct and Vulnerable to Arginine Depletion.<br>Clinical Cancer Research, 2019, 25, 5107-5121.                                  | 7.0  | 117       |
| 88 | Lysine Acetylation Activates 6-Phosphogluconate Dehydrogenase to Promote Tumor Growth.<br>Molecular Cell, 2014, 55, 552-565.                                                         | 9.7  | 107       |
| 89 | IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma.<br>Nature Cell Biology, 2019, 21, 1003-1014.                                      | 10.3 | 107       |
| 90 | Loss of EZH2 Reprograms BCAA Metabolism to Drive Leukemic Transformation. Cancer Discovery, 2019, 9, 1228-1247.                                                                      | 9.4  | 107       |

6

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Role of Glutamine in Cancer: Therapeutic and Imaging Implications: FIGURE 1 Journal of Nuclear<br>Medicine, 2011, 52, 1005-1008.                                                                                           | 5.0  | 105       |
| 92  | MAVS, cGAS, and endogenous retroviruses in T-independent B cell responses. Science, 2014, 346, 1486-1492.                                                                                                                  | 12.6 | 105       |
| 93  | Evidence of Glycolysis Up-Regulation andÂPyruvate Mitochondrial Oxidation Mismatch During<br>Mechanical Unloading ofÂthe Failing Human Heart. JACC Basic To Translational Science, 2016, 1, 432-444.                       | 4.1  | 105       |
| 94  | Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe<br>induced by ß-lapachone. Cancer & Metabolism, 2015, 3, 12.                                                              | 5.0  | 104       |
| 95  | Inhibition of Cancer Cell Proliferation by PPARÎ <sup>3</sup> Is Mediated by a Metabolic Switch that Increases Reactive Oxygen Species Levels. Cell Metabolism, 2014, 20, 650-661.                                         | 16.2 | 103       |
| 96  | Chemistry-First Approach for Nomination of Personalized Treatment in Lung Cancer. Cell, 2018, 173, 864-878.e29.                                                                                                            | 28.9 | 102       |
| 97  | Comparison of kinetic models for analysis of pyruvateâ€ŧoâ€ŀactate exchange by hyperpolarized<br><sup>13</sup> C NMR. NMR in Biomedicine, 2012, 25, 1286-1294.                                                             | 2.8  | 100       |
| 98  | Lipid sensing by mTOR complexes via de novo synthesis of phosphatidic acid. Journal of Biological<br>Chemistry, 2017, 292, 6303-6311.                                                                                      | 3.4  | 99        |
| 99  | Cutting Edge: Critical Role of Glycolysis in Human Plasmacytoid Dendritic Cell Antiviral Responses.<br>Journal of Immunology, 2016, 196, 2004-2009.                                                                        | 0.8  | 95        |
| 100 | Serine Metabolism: Some Tumors Take the Road Less Traveled. Cell Metabolism, 2011, 14, 285-286.                                                                                                                            | 16.2 | 91        |
| 101 | Metabolic dysregulation in monogenic disorders and cancer — finding method in madness. Nature<br>Reviews Cancer, 2015, 15, 440-448.                                                                                        | 28.4 | 89        |
| 102 | Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis. Human Mutation, 2012, 33, 316-326.                                                                            | 2.5  | 86        |
| 103 | Metaâ€∎nalysis of clinical metabolic profiling studies in cancer: challenges and opportunities. EMBO<br>Molecular Medicine, 2016, 8, 1134-1142.                                                                            | 6.9  | 83        |
| 104 | The hexosamine biosynthesis pathway is a targetable liability in KRAS/LKB1 mutant lung cancer. Nature<br>Metabolism, 2020, 2, 1401-1412.                                                                                   | 11.9 | 82        |
| 105 | Quantitative metabolic flux analysis reveals an unconventional pathway of fatty acid synthesis in cancer cells deficient for the mitochondrial citrate transport protein. Metabolic Engineering, 2017, 43, 198-207.        | 7.0  | 80        |
| 106 | LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment.<br>Journal of Clinical Investigation, 2015, 125, 4063-4076.                                                                   | 8.2  | 79        |
| 107 | Hypoxic metabolism in human hematopoietic stem cells. Cell and Bioscience, 2015, 5, 39.                                                                                                                                    | 4.8  | 77        |
| 108 | Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in<br>transformed cells. Proceedings of the National Academy of Sciences of the United States of America,<br>2015, 112, 394-399. | 7.1  | 76        |

| #   | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | RIPK1-mediated induction of mitophagy compromises the viability of extracellular-matrix-detached cells. Nature Cell Biology, 2018, 20, 272-284.                                                                               | 10.3 | 75        |
| 110 | Both GLS silencing and GLS2 overexpression synergize with oxidative stress against proliferation of glioma cells. Journal of Molecular Medicine, 2014, 92, 277-290.                                                           | 3.9  | 74        |
| 111 | Regulation of branched-chain amino acid metabolism by hypoxia-inducible factor in glioblastoma.<br>Cellular and Molecular Life Sciences, 2021, 78, 195-206.                                                                   | 5.4  | 74        |
| 112 | A comparative study of short†and longâ€TE <sup>1</sup> H MRS at 3 T for <i>in vivo</i> detection of 2â€hydroxyglutarate in brain tumors. NMR in Biomedicine, 2013, 26, 1242-1250.                                             | 2.8  | 73        |
| 113 | A Mitochondrial RNAi Screen Defines Cellular Bioenergetic Determinants and Identifies an Adenylate<br>Kinase as a Key Regulator of ATP Levels. Cell Reports, 2014, 7, 907-917.                                                | 6.4  | 73        |
| 114 | Tetrameric Acetyl-CoA Acetyltransferase 1 Is Important for Tumor Growth. Molecular Cell, 2016, 64,<br>859-874.                                                                                                                | 9.7  | 73        |
| 115 | Genetically-defined metabolic reprogramming in cancer. Trends in Endocrinology and Metabolism, 2012, 23, 552-559.                                                                                                             | 7.1  | 72        |
| 116 | Analysis of Hypoxia-Induced Metabolic Reprogramming. Methods in Enzymology, 2014, 542, 425-455.                                                                                                                               | 1.0  | 72        |
| 117 | The NQO1 bioactivatable drug, Î <sup>2</sup> -lapachone, alters the redox state of NQO1+ pancreatic cancer cells, causing perturbation in central carbon metabolism. Journal of Biological Chemistry, 2017, 292, 18203-18216. | 3.4  | 72        |
| 118 | A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles.<br>Nature Communications, 2015, 6, 8524.                                                                                       | 12.8 | 71        |
| 119 | Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 746-751.                | 7.1  | 71        |
| 120 | p63 and SOX2 Dictate Glucose Reliance and Metabolic Vulnerabilities in Squamous Cell Carcinomas.<br>Cell Reports, 2019, 28, 1860-1878.e9.                                                                                     | 6.4  | 68        |
| 121 | Glucose metabolism via the pentose phosphate pathway, glycolysis and Krebs cycle in an orthotopic mouse model of human brain tumors. NMR in Biomedicine, 2012, 25, 1177-1186.                                                 | 2.8  | 66        |
| 122 | D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2. Nature Communications, 2015, 6, 7768.                                                                                                | 12.8 | 64        |
| 123 | Mitochondrial fatty acid synthesis coordinates oxidative metabolism in mammalian mitochondria.<br>ELife, 2020, 9, .                                                                                                           | 6.0  | 62        |
| 124 | A Novel Mitochondrial Inhibitor Blocks MAPK Pathway and Overcomes MAPK Inhibitor Resistance in<br>Melanoma. Clinical Cancer Research, 2019, 25, 6429-6442.                                                                    | 7.0  | 61        |
| 125 | Mitochondrial NADP+ is essential for proline biosynthesis during cell growth. Nature Metabolism, 2021, 3, 571-585.                                                                                                            | 11.9 | 61        |
| 126 | Analysis of the Promoter from an Expanding Mouse Retrotransposon Subfamily. Genomics, 1999, 56, 317-323.                                                                                                                      | 2.9  | 57        |

| #   | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Metabolic plasticity maintains proliferation in pyruvate dehydrogenase deficient cells. Cancer & Metabolism, 2015, 3, 7.                                                                                                                        | 5.0  | 56        |
| 128 | Real-time Detection of Hepatic Gluconeogenic and Glycogenolytic States Using Hyperpolarized [2-13C]Dihydroxyacetone. Journal of Biological Chemistry, 2014, 289, 35859-35867.                                                                   | 3.4  | 55        |
| 129 | Lkb1 deficiency confers glutamine dependency in polycystic kidney disease. Nature Communications, 2018, 9, 814.                                                                                                                                 | 12.8 | 55        |
| 130 | Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans. Cell Reports, 2019, 27, 1376-1386.e6.                                                                                                                       | 6.4  | 55        |
| 131 | The Hypoxic Epicardial and Subepicardial Microenvironment. Journal of Cardiovascular Translational Research, 2012, 5, 654-665.                                                                                                                  | 2.4  | 54        |
| 132 | Loss of a Negative Regulator of mTORC1 Induces Aerobic Glycolysis and Altered Fiber Composition in Skeletal Muscle. Cell Reports, 2018, 23, 1907-1914.                                                                                          | 6.4  | 54        |
| 133 | Mutations in mitochondrial enzyme GPT2 cause metabolic dysfunction and neurological disease with developmental and progressive features. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5598-607. | 7.1  | 51        |
| 134 | Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell, 2022, 185, 2678-2689.                                                                                                                                               | 28.9 | 51        |
| 135 | Tumor-selective use of DNA base excision repair inhibition in pancreatic cancer using the NQO1 bioactivatable drug, β-lapachone. Scientific Reports, 2015, 5, 17066.                                                                            | 3.3  | 50        |
| 136 | Induction of LEF1 by MYC activates the WNT pathway and maintains cell proliferation. Cell<br>Communication and Signaling, 2019, 17, 129.                                                                                                        | 6.5  | 50        |
| 137 | Simultaneous Steady-state and Dynamic 13C NMR Can Differentiate Alternative Routes of Pyruvate<br>Metabolism in Living Cancer Cells. Journal of Biological Chemistry, 2014, 289, 6212-6224.                                                     | 3.4  | 49        |
| 138 | Biomarker Accessible and Chemically Addressable Mechanistic Subtypes of BRAF Melanoma. Cancer<br>Discovery, 2017, 7, 832-851.                                                                                                                   | 9.4  | 49        |
| 139 | Compartmentalized metabolism supports midgestation mammalian development. Nature, 2022, 604, 349-353.                                                                                                                                           | 27.8 | 47        |
| 140 | 1-Methylnicotinamide is an immune regulatory metabolite in human ovarian cancer. Science Advances,<br>2021, 7, .                                                                                                                                | 10.3 | 46        |
| 141 | Reactive metabolite production is a targetable liability of glycolytic metabolism in lung cancer.<br>Nature Communications, 2019, 10, 5604.                                                                                                     | 12.8 | 45        |
| 142 | Measurement of glycine in the human brain in vivo by <sup>1</sup> Hâ€MRS at 3 T: application in brain<br>tumors. Magnetic Resonance in Medicine, 2011, 66, 609-618.                                                                             | 3.0  | 44        |
| 143 | Cell-autonomous immune gene expression is repressed in pulmonary neuroendocrine cells and small cell lung cancer. Communications Biology, 2021, 4, 314.                                                                                         | 4.4  | 44        |
| 144 | Profilin 1 is essential for retention and metabolism of mouse hematopoietic stem cells in bone marrow. Blood, 2014, 123, 992-1001.                                                                                                              | 1.4  | 40        |

| #   | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Stable isotope tracing to assess tumor metabolism in vivo. Nature Protocols, 2021, 16, 5123-5145.                                                                                                                                                                  | 12.0 | 40        |
| 146 | γ-6-Phosphogluconolactone, a Byproduct of the Oxidative Pentose Phosphate Pathway, Contributes to<br>AMPK Activation through Inhibition of PP2A. Molecular Cell, 2019, 76, 857-871.e9.                                                                             | 9.7  | 39        |
| 147 | A Novel Radiotracer to Image Clycogen Metabolism in Tumors by Positron Emission Tomography.<br>Cancer Research, 2014, 74, 1319-1328.                                                                                                                               | 0.9  | 38        |
| 148 | Glutathione Depletion, Pentose Phosphate Pathway Activation, and Hemolysis in Erythrocytes<br>Protecting Cancer Cells from Vitamin C-induced Oxidative Stress. Journal of Biological Chemistry,<br>2016, 291, 22861-22867.                                         | 3.4  | 38        |
| 149 | The abundance of metabolites related to protein methylation correlates with the metastatic capacity of human melanoma xenografts. Science Advances, 2017, 3, eaao5268.                                                                                             | 10.3 | 38        |
| 150 | Glycine by MR spectroscopy is an imaging biomarker of glioma aggressiveness. Neuro-Oncology, 2020, 22, 1018-1029.                                                                                                                                                  | 1.2  | 37        |
| 151 | Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                                    | 7.1  | 35        |
| 152 | Transmembrane Protease TMPRSS11B Promotes Lung Cancer Growth by Enhancing Lactate Export and Glycolytic Metabolism. Cell Reports, 2018, 25, 2223-2233.e6.                                                                                                          | 6.4  | 34        |
| 153 | Cancer-Specific Production of N-Acetylaspartate via NAT8L Overexpression in Non–Small Cell Lung<br>Cancer and Its Potential as a Circulating Biomarker. Cancer Prevention Research, 2016, 9, 43-52.                                                                | 1.5  | 33        |
| 154 | Analyzing Tumor Metabolism In Vivo. Annual Review of Cancer Biology, 2017, 1, 99-117.                                                                                                                                                                              | 4.5  | 33        |
| 155 | Guanosine triphosphate links MYC-dependent metabolic and ribosome programs in small-cell lung cancer. Journal of Clinical Investigation, 2021, 131, .                                                                                                              | 8.2  | 33        |
| 156 | Metabolic diversity within breast cancer brain-tropic cells determines metastatic fitness. Cell<br>Metabolism, 2022, 34, 90-105.e7.                                                                                                                                | 16.2 | 33        |
| 157 | Hyperpolarized 13C Magnetic Resonance and Its Use in Metabolic Assessment of Cultured Cells and Perfused Organs. Methods in Enzymology, 2015, 561, 73-106.                                                                                                         | 1.0  | 30        |
| 158 | The major cap-binding protein eIF4E regulates lipid homeostasis and diet-induced obesity. Nature<br>Metabolism, 2021, 3, 244-257.                                                                                                                                  | 11.9 | 29        |
| 159 | Isocitrate dehydrogenase 1/2 mutational analyses and 2â€hydroxyglutarate measurements in Wilms<br>tumors. Pediatric Blood and Cancer, 2011, 56, 379-383.                                                                                                           | 1.5  | 28        |
| 160 | Using arterial–venous analysis to characterize cancer metabolic consumption in patients. Nature<br>Communications, 2020, 11, 3169.                                                                                                                                 | 12.8 | 28        |
| 161 | Gainâ€ofâ€function variants in the <i>ODC1</i> gene cause a syndromic neurodevelopmental disorder associated with macrocephaly, alopecia, dysmorphic features, and neuroimaging abnormalities. American Journal of Medical Genetics, Part A, 2018, 176, 2554-2560. | 1.2  | 26        |
| 162 | Metabolic Plasticity of Neutrophils: Relevance to Pathogen Responses and Cancer. Trends in Cancer, 2021, 7, 700-713.                                                                                                                                               | 7.4  | 26        |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | p53 deficiency triggers dysregulation of diverse cellular processes in physiological oxygen. Journal of<br>Cell Biology, 2020, 219, .                                                               | 5.2  | 26        |
| 164 | When more is less. Nature, 2012, 489, 511-512.                                                                                                                                                      | 27.8 | 25        |
| 165 | Oxidation of [Uâ€ <sup>13</sup> C]glucose in the human brain at 7T under steady state conditions.<br>Magnetic Resonance in Medicine, 2017, 78, 2065-2071.                                           | 3.0  | 25        |
| 166 | A male-derived nonribosomal peptide pheromone controls female schistosome development. Cell, 2022, 185, 1506-1520.e17.                                                                              | 28.9 | 25        |
| 167 | Using a novel NQO1 bioactivatable drug, betaâ€lapachone (ARQ761), to enhance chemotherapeutic effects by metabolic modulation in pancreatic cancer. Journal of Surgical Oncology, 2017, 116, 83-88. | 1.7  | 24        |
| 168 | Wilms Tumor in a Child with L-2-hydroxyglutaric Aciduria. Pediatric and Developmental Pathology, 2010, 13, 408-411.                                                                                 | 1.0  | 23        |
| 169 | Glutamine uptake and utilization of human mesenchymal glioblastoma in orthotopic mouse model.<br>Cancer & Metabolism, 2020, 8, 9.                                                                   | 5.0  | 22        |
| 170 | Does Tumor FDG-PET Avidity Represent Enhanced Glycolytic Metabolism in Non-Small Cell Lung<br>Cancer?. Annals of Thoracic Surgery, 2020, 109, 1019-1025.                                            | 1.3  | 21        |
| 171 | EWS-FLI1–regulated Serine Synthesis and Exogenous Serine are Necessary for Ewing Sarcoma Cellular<br>Proliferation and Tumor Growth. Molecular Cancer Therapeutics, 2020, 19, 1520-1529.            | 4.1  | 21        |
| 172 | Isotope tracing reveals glycolysis and oxidative metabolism in childhood tumors of multiple histologies. Med, 2021, 2, 395-410.e4.                                                                  | 4.4  | 21        |
| 173 | The transcription factors aryl hydrocarbon receptor and MYC cooperate in the regulation of cellular metabolism. Journal of Biological Chemistry, 2020, 295, 12398-12407.                            | 3.4  | 19        |
| 174 | In vivo analysis of lung cancer metabolism: nothing like the real thing. Journal of Clinical<br>Investigation, 2015, 125, 495-497.                                                                  | 8.2  | 17        |
| 175 | The cancer cell â€ <sup>-</sup> energy grid': TGF-β1 signaling coordinates metabolism for migration. Molecular and<br>Cellular Oncology, 2015, 2, e981994.                                          | 0.7  | 17        |
| 176 | Concentration-dependent Early Antivascular and Antitumor Effects of Itraconazole in Non–Small<br>Cell Lung Cancer. Clinical Cancer Research, 2020, 26, 6017-6027.                                   | 7.0  | 16        |
| 177 | A renal cell carcinoma tumorgraft platform to advance precision medicine. Cell Reports, 2021, 37, 110055.                                                                                           | 6.4  | 16        |
| 178 | Targeting BCAT1 Combined with α-Ketoglutarate Triggers Metabolic Synthetic Lethality in Glioblastoma.<br>Cancer Research, 2022, 82, 2388-2402.                                                      | 0.9  | 16        |
| 179 | A pathogenic UFSP2 variant in an autosomal recessive form of pediatric neurodevelopmental anomalies and epilepsy. Genetics in Medicine, 2021, 23, 900-908.                                          | 2.4  | 14        |
| 180 | A Mitochondrial Power Play in Lymphoma. Cancer Cell, 2012, 22, 423-424.                                                                                                                             | 16.8 | 13        |

| #   | Article                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Systematic Analysis of Gene Expression in Lung Adenocarcinoma and Squamous Cell Carcinoma with a<br>Case Study of FAM83A and FAM83B. Cancers, 2019, 11, 886.                                           | 3.7  | 13        |
| 182 | In vivo detection of citrate in brain tumors by <sup>1</sup> H magnetic resonance spectroscopy at 3T.<br>Magnetic Resonance in Medicine, 2014, 72, 316-323.                                            | 3.0  | 12        |
| 183 | Assessment of Rapid Hepatic Glycogen Synthesis in Humans Using Dynamic 13C Magnetic Resonance<br>Spectroscopy. Hepatology Communications, 2020, 4, 425-433.                                            | 4.3  | 12        |
| 184 | α-ketobutyrate links alterations in cystine metabolism to glucose oxidation in mtDNA mutant cells.<br>Metabolic Engineering, 2020, 60, 157-167.                                                        | 7.0  | 12        |
| 185 | Clinically relevant TÂcell expansion media activate distinct metabolic programs uncoupled from cellular function. Molecular Therapy - Methods and Clinical Development, 2022, 24, 380-393.             | 4.1  | 12        |
| 186 | Silencing a Metabolic Oncogene. Science, 2013, 340, 558-559.                                                                                                                                           | 12.6 | 11        |
| 187 | Full-Length L1 Elements Have Arisen Recently in the Same 1-kb Region of the Gorilla and Human<br>Genomes. Journal of Molecular Evolution, 1998, 47, 292-301.                                           | 1.8  | 10        |
| 188 | Good neighbours in the tumour stroma reduce oxidative stress. Nature Cell Biology, 2012, 14, 235-236.                                                                                                  | 10.3 | 10        |
| 189 | Conditions for 13C NMR detection of 2-hydroxyglutarate in tissue extracts from isocitrate dehydrogenase-mutated gliomas. Analytical Biochemistry, 2015, 481, 4-6.                                      | 2.4  | 10        |
| 190 | Active pyruvate dehydrogenase and impaired gluconeogenesis in orthotopic hepatomas of rats.<br>Metabolism: Clinical and Experimental, 2019, 101, 153993.                                               | 3.4  | 10        |
| 191 | Vitamin B6-dependent epilepsy due to pyridoxal phosphate-binding protein (PLPBP) defect – First case report from Pakistan and review of literature. Annals of Medicine and Surgery, 2020, 60, 721-727. | 1.1  | 10        |
| 192 | SNAT7 regulates mTORC1 via macropinocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2123261119.                                                  | 7.1  | 9         |
| 193 | Detection of glucose-derived d- and l-lactate in cancer cells by the use of a chiral NMR shift reagent.<br>Cancer & Metabolism, 2021, 9, 38.                                                           | 5.0  | 8         |
| 194 | Hepatic gluconeogenesis influences 13C enrichment in lactate in human brain tumors during metabolism of [1,2-13C]acetate. Neurochemistry International, 2016, 97, 133-136.                             | 3.8  | 7         |
| 195 | Blocking fatty acid synthesis reduces lung tumor growth in mice. Nature Medicine, 2016, 22, 1077-1078.                                                                                                 | 30.7 | 7         |
| 196 | Proliferating Cells Conserve Nitrogen to Support Growth. Cell Metabolism, 2016, 23, 957-958.                                                                                                           | 16.2 | 6         |
| 197 | N-Acetyl cysteine abrogates silver-induced reactive oxygen species in human cells without altering silver-based antimicrobial activity. Toxicology Letters, 2020, 332, 118-129.                        | 0.8  | 5         |
| 198 | Metabolic impact of pathogenic variants in the mitochondrial <scp>glutamylâ€ŧRNA</scp> synthetase<br><scp>EARS2</scp> . Journal of Inherited Metabolic Disease, 2021, 44, 949-960.                     | 3.6  | 5         |

| #   | Article                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Mitochondrial enzyme GPT2 regulates metabolic mechanisms required for neuron growth and motor function <i>in vivo</i> . Human Molecular Genetics, 2022, 31, 587-603.                  | 2.9  | 5         |
| 200 | Integrated Metabolic Profiling and Transcriptional Analysis Reveals Therapeutic Modalities for<br>Targeting Rapidly Proliferating Breast Cancers. Cancer Research, 2022, 82, 665-680. | 0.9  | 5         |
| 201 | Growth in the fat lane. Nature, 2015, 520, 165-166.                                                                                                                                   | 27.8 | 4         |
| 202 | Assessing consistency across functional screening datasets in cancer cells. Bioinformatics, 2021, 37, 4540-4547.                                                                      | 4.1  | 4         |
| 203 | Q&A: Targeting metabolism to diagnose and treat cancer. Cancer & Metabolism, 2014, 2, 5.                                                                                              | 5.0  | 3         |
| 204 | Metabolic vulnerability in tumours illuminated. Nature, 2019, 575, 296-297.                                                                                                           | 27.8 | 3         |
| 205 | Leveraging insights into cancer metabolism—a symposium report. Annals of the New York Academy of Sciences, 2020, 1462, 5-13.                                                          | 3.8  | 3         |
| 206 | From "Nof 1―toNof more. Journal of Physical Education and Sports Management, 2015, 1, a000521.                                                                                        | 1.2  | 2         |
| 207 | Liposuction: Extracellular Fat Removal Promotes Proliferation. Cell Chemical Biology, 2016, 23, 431-432.                                                                              | 5.2  | 2         |
| 208 | Engineering approaches to study cancer metabolism. Metabolic Engineering, 2017, 43, 93.                                                                                               | 7.0  | 2         |
| 209 | Profiling Carbohydrate Metabolism in Liver and Hepatocellular Carcinoma with [ 13 C]â€Glycerate<br>Probes. Analysis & Sensing, 2021, 1, 196.                                          | 2.0  | 2         |
| 210 | Cellular signals converge at the NOX2-SHP-2 axis to induce reductive carboxylation in cancer cells.<br>Cell Chemical Biology, 2022, , .                                               | 5.2  | 2         |
| 211 | Addressing metabolic heterogeneity in clear cell renal cell carcinoma with quantitative magnetic resonance imaging Journal of Clinical Oncology, 2017, 35, 460-460.                   | 1.6  | 1         |
| 212 | Optimized protocol for stable isotope tracing and steady-state metabolomics in mouse HER2+ breast cancer brain metastasis. STAR Protocols, 2022, 3, 101345.                           | 1.2  | 1         |
| 213 | AIF: an acquired metabolic liability in lung cancer. Cell Research, 2019, 29, 607-608.                                                                                                | 12.0 | 0         |
| 214 | Abstract 871: KYNU expression is a prognostic factor in KEAP1/STK11 co-mutated lung adenocarcinoma. , 2021, , .                                                                       |      | 0         |
| 215 | Quantitative Proteomic and Transcriptomic Analysis Reveals Post-Transcriptional Regulation of<br>Mitochondrial Biogenesis during Erythropoiesis. Blood, 2015, 126, 47-47.             | 1.4  | 0         |
| 216 | Mitochondria Coordinate Intracellular Metabolism and Epigenetic Gene Regulation during<br>Erythropoiesis. Blood, 2016, 128, 1038-1038.                                                | 1.4  | 0         |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | A tribute to Beth Levine (1960–2020). Journal of Clinical Investigation, 2020, 130, 4517-4518.                                                                                                                           | 8.2 | 0         |
| 218 | Abstract P5-05-01: Metabolite profiling and RNA-seq identifies novel metabolomic-genomic biomarker<br>and therapeutic options for rapidly proliferating breast cancers. Cancer Research, 2022, 82,<br>P5-05-01-P5-05-01. | 0.9 | 0         |
| 219 | 3089 – ELUCIDATING NEW MECHANISMS OF ACQUIRED RESISTANCE TO IDH INHIBITION BY SATURATION<br>VARIANT SCREENING OF BASE-EDITED LEUKEMIA CELLS. Experimental Hematology, 2021, 100, S85.                                    | 0.4 | Ο         |