
Daniel Cavalcanti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3690469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bell nonlocality. Reviews of Modern Physics, 2014, 86, 419-478.	45.6	1,792
2	Almost all quantum states have nonclassical correlations. Physical Review A, 2010, 81, .	2.5	435
3	Operational interpretations of quantum discord. Physical Review A, 2011, 83, .	2.5	306
4	Quantifying Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2014, 112, 180404.	7.8	295
5	Quantum steering: a review with focus on semidefinite programming. Reports on Progress in Physics, 2017, 80, 024001.	20.1	293
6	Scaling Laws for the Decay of Multiqubit Entanglement. Physical Review Letters, 2008, 100, 080501.	7.8	195
7	Inequivalence of entanglement, steering, and Bell nonlocality for general measurements. Physical Review A, 2015, 92, .	2.5	165
8	Detection of entanglement in asymmetric quantum networks and multipartite quantum steering. Nature Communications, 2015, 6, 7941.	12.8	137
9	Nonlocal correlations in the star-network configuration. Physical Review A, 2014, 90, .	2.5	98
10	Hierarchy of Steering Criteria Based on Moments for All Bipartite Quantum Systems. Physical Review Letters, 2015, 115, 210401.	7.8	96
11	Quantum networks reveal quantum nonlocality. Nature Communications, 2011, 2, 184.	12.8	93
12	Optimal randomness certification in the quantum steering and prepare-and-measure scenarios. New Journal of Physics, 2015, 17, 113010.	2.9	78
13	All Sets of Incompatible Measurements give an Advantage in Quantum State Discrimination. Physical Review Letters, 2019, 122, 130403.	7.8	74
14	Quantitative relations between measurement incompatibility, quantum steering, and nonlocality. Physical Review A, 2016, 93, .	2.5	69
15	Distribution of entanglement in large-scale quantum networks. Reports on Progress in Physics, 2013, 76, 096001.	20.1	68
16	Unified Framework for Correlations in Terms of Local Quantum Observables. Physical Review Letters, 2010, 104, 140404.	7.8	62
17	Maximal Randomness Generation from Steering Inequality Violations Using Qudits. Physical Review Letters, 2018, 120, 260401.	7.8	62
18	Device-Independent Certification of Entangled Measurements. Physical Review Letters, 2011, 107, 050502.	7.8	61

#	Article	IF	CITATIONS
19	General Method for Constructing Local Hidden Variable Models for Entangled Quantum States. Physical Review Letters, 2016, 117, 190401.	7.8	60
20	All quantum states useful for teleportation are nonlocal resources. Physical Review A, 2013, 87, .	2.5	57
21	All Entangled States can Demonstrate Nonclassical Teleportation. Physical Review Letters, 2017, 119, 110501.	7.8	57
22	Publisher's Note: Bell nonlocality [Rev. Mod. Phys. 86 , 419 (2014)]. Reviews of Modern Physics, 2014, 86, 839-840.	45.6	53
23	Thermal Bound Entanglement in Macroscopic Systems and Area Law. Physical Review Letters, 2008, 100, 080502.	7.8	52
24	Open-System Dynamics of Graph-State Entanglement. Physical Review Letters, 2009, 103, 030502.	7.8	48
25	Postquantum Steering. Physical Review Letters, 2015, 115, 190403.	7.8	48
26	Device-Independent Entanglement Certification of All Entangled States. Physical Review Letters, 2018, 121, 180503.	7.8	43
27	QUANTUM LOCKING OF CLASSICAL CORRELATIONS AND QUANTUM DISCORD OF CLASSICAL-QUANTUM STATES. International Journal of Quantum Information, 2011, 09, 1643-1651.	1.1	40
28	Bound Nonlocality and Activation. Physical Review Letters, 2011, 106, 020402.	7.8	40
29	Multi-core fiber integrated multi-port beam splitters for quantum information processing. Optica, 2020, 7, 542.	9.3	38
30	Noisy evolution of graph-state entanglement. Physical Review A, 2010, 82, .	2.5	37
31	Entanglement versus energy in the entanglement transfer problem. Physical Review A, 2006, 74, .	2.5	36
32	Connecting the generalized robustness and the geometric measure of entanglement. Physical Review A, 2006, 73, .	2.5	35
33	Scalability of Greenberger-Horne-Zeilinger and random-state entanglement in the presence of decoherence. Physical Review A, 2009, 79, .	2.5	35
34	Bounding the Sets of Classical and Quantum Correlations in Networks. Physical Review Letters, 2019, 123, 140503.	7.8	35
35	Device-independent quantum key distribution with single-photon sources. Quantum - the Open Journal for Quantum Science, 0, 4, 260.	0.0	35
36	Distillable entanglement and area laws in spin and harmonic-oscillator systems. Physical Review A, 2008, 78, .	2.5	34

#	Article	IF	CITATIONS
37	Loss-tolerant Einstein-Podolsky-Rosen steering for arbitrary-dimensional states: Joint measurability and unbounded violations under losses. Physical Review A, 2015, 92, .	2.5	34
38	Most incompatible measurements for robust steering tests. Physical Review A, 2017, 96, .	2.5	33
39	A neural network oracle for quantum nonlocality problems in networks. Npj Quantum Information, 2020, 6, .	6.7	33
40	Efficient Device-Independent Entanglement Detection for Multipartite Systems. Physical Review X, 2017, 7, .	8.9	32
41	Causal hierarchy of multipartite Bell nonlocality. Quantum - the Open Journal for Quantum Science, 0, 1, 23.	0.0	32
42	Statistical Properties of the Quantum Internet. Physical Review Letters, 2020, 124, 210501.	7.8	31
43	Useful entanglement from the Pauli principle. Physical Review B, 2007, 76, .	3.2	29
44	Multipartite fully nonlocal quantum states. Physical Review A, 2010, 81, .	2.5	29
45	Large violation of Bell inequalities using both particle andwave measurements. Physical Review A, 2011, 84, .	2.5	29
46	Multipartite quantum nonlocality under local decoherence. Physical Review A, 2012, 86, .	2.5	29
47	Are all maximally entangled states pure?. Physical Review A, 2005, 72, .	2.5	28
48	Information-causality and extremal tripartite correlations. New Journal of Physics, 2012, 14, 013061.	2.9	28
49	Measurement-device-independent entanglement and randomness estimation in quantum networks. Physical Review A, 2017, 95, .	2.5	28
50	Multipartite entanglement percolation. Physical Review A, 2010, 81, .	2.5	27
51	Macroscopically local correlations can violate information causality. Nature Communications, 2010, 1, 136.	12.8	27
52	Nonlocality Tests Enhanced by a Third Observer. Physical Review Letters, 2012, 108, 040402.	7.8	27
53	Experimental nonlocality-based randomness generation with nonprojective measurements. Physical Review A, 2018, 97, .	2.5	26
54	Self-testing of Pauli observables for device-independent entanglement certification. Physical Review A, 2018, 98, .	2.5	26

4

#	Article	IF	CITATIONS
55	Quantum Nonlocality and Partial Transposition for Continuous-Variable Systems. Physical Review Letters, 2008, 101, 040404.	7.8	25
56	Bell tests for continuous-variable systems using hybrid measurements and heralded amplifiers. Physical Review A, 2012, 85, .	2.5	25
57	Estimating entanglement of unknown states. Applied Physics Letters, 2006, 89, 084102.	3.3	24
58	Satellite-Based Photonic Quantum Networks Are Small-World. PRX Quantum, 2021, 2, .	9.2	22
59	Experimental investigation of partially entangled states for device-independent randomness generation and self-testing protocols. Physical Review A, 2019, 99, .	2.5	21
60	Frequency-bin entanglement of ultra-narrow band non-degenerate photon pairs. Quantum Science and Technology, 2018, 3, 014007.	5.8	19
61	Increasing identical particle entanglement by fuzzy measurements. Physical Review A, 2005, 72, .	2.5	18
62	Realistic loophole-free Bell test with atom–photon entanglement. Nature Communications, 2013, 4, 2104.	12.8	18
63	Experimental multipartite entanglement and randomness certification of the W state in the quantum steering scenario. Quantum Science and Technology, 2017, 2, 015011.	5.8	18
64	Physically realizable entanglement by local continuous measurements. Physical Review A, 2011, 83, .	2.5	17
65	Experimental device-independent certified randomness generation with an instrumental causal structure. Communications Physics, 2020, 3, .	5.3	17
66	Multipartite entanglement of superpositions. Physical Review A, 2007, 76, .	2.5	16
67	Perfect Quantum Privacy Implies Nonlocality. Physical Review Letters, 2010, 104, 230401.	7.8	16
68	Macroscopic bound entanglement in thermal graph states. New Journal of Physics, 2010, 12, 025011.	2.9	16
69	Maximal violations and efficiency requirements for Bell tests with photodetection and homodyne measurements. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 215308.	2.1	16
70	Necessary detection efficiencies for secure quantum key distribution and bound randomness. Physical Review A, 2016, 93, .	2.5	16
71	Detecting nonlocality of noisy multipartite states with the Clauser-Horne-Shimony-Holt inequality. Physical Review A, 2014, 89, .	2.5	15
72	Methods to estimate entanglement in teleportation experiments. Physical Review A, 2019, 99, .	2.5	15

#	Article	IF	CITATIONS
73	Protection of quantum information and optimal singlet conversion through higher-dimensional quantum systems and environment monitoring. Physical Review A, 2010, 81, .	2.5	14
74	Experimental Robust Self-Testing of the State Generated by a Quantum Network. PRX Quantum, 2021, 2, .	9.2	14
75	Tests of Bell inequality with arbitrarily low photodetection efficiency and homodyne measurements. Physical Review A, 2012, 86, .	2.5	11
76	Enhanced Multiqubit Phase Estimation in Noisy Environments by Local Encoding. Physical Review Letters, 2019, 123, 180503.	7.8	10
77	Linear-Optical Simulation of the Cooling of a Cluster-State Hamiltonian System. Physical Review Letters, 2014, 112, 160501.	7.8	9
78	Experimental Study of Nonclassical Teleportation Beyond Average Fidelity. Physical Review Letters, 2018, 121, 140501.	7.8	9
79	Device-Independent Tests of Structures of Measurement Incompatibility. Physical Review Letters, 2019, 123, 180401.	7.8	9
80	Comment on "Loophole-Free Bell Test for Continuous Variables via Wave and Particle Correlations― Physical Review Letters, 2011, 106, 208901; author reply 208902.	7.8	6
81	Long-distance entanglement generation with scalable and robust two-dimensional quantum network. Physical Review A, 2012, 85, .	2.5	6
82	Device-independent certification of tensor products of quantum states using single-copy self-testing protocols. Quantum - the Open Journal for Quantum Science, 0, 5, 418.	0.0	6
83	Measurement-Device-Independent Entanglement Detection for Continuous-Variable Systems. Physical Review Letters, 2021, 126, 190502.	7.8	6
84	Tomographic characterization of three-qubit pure states with only two-qubit detectors. Physical Review A, 2005, 71, .	2.5	5
85	Optimal randomness generation from optical Bell experiments. New Journal of Physics, 2015, 17, 022003.	2.9	5
86	Single-copy activation of Bell nonlocality via broadcasting of quantum states. Quantum - the Open Journal for Quantum Science, 0, 5, 499.	0.0	4
87	Entanglement quantifiers, entanglement crossover and phase transitions. New Journal of Physics, 2006, 8, 260-260.	2.9	3
88	Verification of joint measurability using phase-space quasiprobability distributions. Physical Review A, 2021, 104, .	2.5	3
89	Geometrically induced singular behavior of entanglement. Physical Review A, 2008, 78, .	2.5	2
90	Analysis of a proposal for a realistic loophole-free Bell test with atom-light entanglement. Physical Review A, 2013, 88, .	2.5	2

#	ARTICLE	IF	CITATIONS
91	Split, but still attached. Science, 2018, 360, 376-377.	12.6	2
92	High-speed batch processing of semidefinite programs with feedforward neural networks. New Journal of Physics, 2021, 23, 103034.	2.9	2
93	Large violation of Bell inequalities using both particle and wave measurements. , 2011, , .		0
94	Publisher's Note: Detecting nonlocality of noisy multipartite states with the Clauser-Horne-Shimony-Holt inequality [Phys. Rev. A 89 , 042106 (2014)]. Physical Review A, 2015, 91, .	2.5	0