Michael D Mclellan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3690266/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Comprehensive molecular portraits of human breast tumours. Nature, 2012, 490, 61-70.	27.8	10,282
2	A map of human genome variation from population-scale sequencing. Nature, 2010, 467, 1061-1073.	27.8	7,209
3	An integrated map of genetic variation from 1,092 human genomes. Nature, 2012, 491, 56-65.	27.8	7,199
4	Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455, 1061-1068.	27.8	6,879
5	Integrated genomic analyses of ovarian carcinoma. Nature, 2011, 474, 609-615.	27.8	6,541
6	Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 2014, 513, 202-209.	27.8	5,055
7	Comprehensive molecular profiling of lung adenocarcinoma. Nature, 2014, 511, 543-550.	27.8	4,572
8	Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. New England Journal of Medicine, 2013, 368, 2059-2074.	27.0	4,139
9	VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Research, 2012, 22, 568-576.	5.5	4,086
10	Integrated genomic characterization of endometrial carcinoma. Nature, 2013, 497, 67-73.	27.8	4,075
11	Mutational landscape and significance across 12 major cancer types. Nature, 2013, 502, 333-339.	27.8	3,695
12	Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 2008, 455, 1069-1075.	27.8	2,694
13	An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, 2018, 173, 400-416.e11.	28.9	2,277
14	Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome. New England Journal of Medicine, 2009, 361, 1058-1066.	27.0	2,009
15	Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature, 2012, 481, 506-510.	27.8	1,795
16	<i>DNMT3A</i> Mutations in Acute Myeloid Leukemia. New England Journal of Medicine, 2010, 363, 2424-2433.	27.0	1,777
17	Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell, 2018, 173, 291-304.e6.	28.9	1,718
18	Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell, 2018, 173, 371-385.e18.	28.9	1,670

#	Article	IF	CITATIONS
19	Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nature Medicine, 2014, 20, 1472-1478.	30.7	1,533
20	Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell, 2015, 163, 506-519.	28.9	1,485
21	Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell, 2018, 173, 338-354.e15.	28.9	1,417
22	Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 2016, 534, 55-62.	27.8	1,384
23	The Origin and Evolution of Mutations in Acute Myeloid Leukemia. Cell, 2012, 150, 264-278.	28.9	1,365
24	BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nature Methods, 2009, 6, 677-681.	19.0	1,322
25	DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature, 2008, 456, 66-72.	27.8	1,275
26	Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin. Cell, 2014, 158, 929-944.	28.9	1,242
27	VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics, 2009, 25, 2283-2285.	4.1	1,193
28	Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature, 2010, 464, 999-1005.	27.8	1,077
29	Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature, 2012, 486, 353-360.	27.8	922
30	Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nature Genetics, 2015, 47, 106-114.	21.4	830
31	Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Reports, 2018, 23, 239-254.e6.	6.4	801
32	Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell, 2018, 33, 676-689.e3.	16.8	750
33	Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell, 2017, 171, 950-965.e28.	28.9	738
34	Clonal Architecture of Secondary Acute Myeloid Leukemia. New England Journal of Medicine, 2012, 366, 1090-1098.	27.0	688
35	Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Reports, 2018, 23, 181-193.e7.	6.4	683
36	Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell, 2018, 34, 211-224.e6.	16.8	623

#	Article	IF	CITATIONS
37	Pathogenic Germline Variants in 10,389 Adult Cancers. Cell, 2018, 173, 355-370.e14.	28.9	620
38	Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Systems, 2018, 6, 271-281.e7.	6.2	605
39	MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics, 2014, 30, 1015-1016.	4.1	599
40	The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Reports, 2018, 23, 313-326.e5.	6.4	523
41	Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nature Genetics, 2012, 44, 53-57.	21.4	513
42	Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia, 2011, 25, 1153-1158.	7.2	483
43	Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. Cell Reports, 2017, 18, 2780-2794.	6.4	416
44	Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Reports, 2018, 23, 227-238.e3.	6.4	407
45	IncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic IncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. Cancer Cell, 2018, 33, 706-720.e9.	16.8	400
46	Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell, 2018, 33, 721-735.e8.	16.8	396
47	Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nature Genetics, 2004, 36, 1268-1274.	21.4	367
48	C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nature Genetics, 2007, 39, 1068-1070.	21.4	366
49	SMN2 splice modulators enhance U1–pre-mRNA association and rescue SMA mice. Nature Chemical Biology, 2015, 11, 511-517.	8.0	341
50	Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. Cell Reports, 2018, 23, 282-296.e4.	6.4	333
51	Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer. Cell Reports, 2018, 25, 1304-1317.e5.	6.4	329
52	Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Systems, 2018, 6, 282-300.e2.	6.2	284
53	Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell, 2018, 173, 305-320.e10.	28.9	272
54	Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia, 2013, 27, 1275-1282.	7.2	260

#	Article	IF	CITATIONS
55	Integrated analysis of germline and somatic variants in ovarian cancer. Nature Communications, 2014, 5, 3156.	12.8	253
56	Patterns and functional implications of rare germline variants across 12 cancer types. Nature Communications, 2015, 6, 10086.	12.8	243
57	Acquired copy number alterations in adult acute myeloid leukemia genomes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12950-12955.	7.1	231
58	A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. Cell, 2018, 173, 386-399.e12.	28.9	228
59	Novel <i>MEK1</i> Mutation Identified by Mutational Analysis of Epidermal Growth Factor Receptor Signaling Pathway Genes in Lung Adenocarcinoma. Cancer Research, 2008, 68, 5524-5528.	0.9	206
60	Pan-Cancer Analysis of IncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. Cell Reports, 2018, 23, 297-312.e12.	6.4	205
61	Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. Cell Reports, 2018, 23, 255-269.e4.	6.4	204
62	Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. Blood, 2008, 111, 4797-4808.	1.4	198
63	Clinical and molecular delineation of the 17q21.31 microdeletion syndrome. Journal of Medical Genetics, 2008, 45, 710-720.	3.2	191
64	Systematic Analysis of Splice-Site-Creating Mutations in Cancer. Cell Reports, 2018, 23, 270-281.e3.	6.4	177
65	ldentification of a Novel <emph type="ital">TP53</emph> Cancer Susceptibility Mutation Through Whole-Genome Sequencing of a Patient With Therapy-Related AML. JAMA - Journal of the American Medical Association, 2011, 305, 1568.	7.4	146
66	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-1² Superfamily. Cell Systems, 2018, 7, 422-437.e7.	6.2	134
67	Protein-structure-guided discovery of functional mutations across 19 cancer types. Nature Genetics, 2016, 48, 827-837.	21.4	128
68	Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Reports, 2018, 23, 172-180.e3.	6.4	119
69	Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nature Communications, 2017, 8, 14864.	12.8	112
70	Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif. Nature Communications, 2013, 4, 2730.	12.8	104
71	An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer. Molecular and Cellular Proteomics, 2016, 15, 1060-1071.	3.8	104
72	Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma. Genome Research, 2013, 23, 431-439.	5.5	99

#	Article	IF	CITATIONS
73	Systematic discovery of complex insertions and deletions in human cancers. Nature Medicine, 2016, 22, 97-104.	30.7	93
74	Sequencing a mouse acute promyelocytic leukemia genome reveals genetic events relevant for disease progression. Journal of Clinical Investigation, 2011, 121, 1445-1455.	8.2	91
75	Distinct patterns of mutations occurring in de novo AML versus AML arising in the setting of severe congenital neutropenia. Blood, 2007, 110, 1648-1655.	1.4	88
76	Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Nature, 2005, 434, 724-731.	27.8	85
77	Identification of somatic JAK1 mutations in patients with acute myeloid leukemia. Blood, 2008, 111, 4809-4812.	1.4	84
78	Genome Modeling System: A Knowledge Management Platform for Genomics. PLoS Computational Biology, 2015, 11, e1004274.	3.2	83
79	Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types. Cell Reports, 2018, 23, 213-226.e3.	6.4	83
80	Reduced PU.1 expression causes myeloid progenitor expansion and increased leukemia penetrance in mice expressing PML-RARÂ. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12513-12518.	7.1	81
81	Mutational Analysis of EGFR and Related Signaling Pathway Genes in Lung Adenocarcinomas Identifies a Novel Somatic Kinase Domain Mutation in FGFR4. PLoS ONE, 2007, 2, e426.	2.5	77
82	PolyScan: An automatic indel and SNP detection approach to the analysis of human resequencing data. Genome Research, 2007, 17, 659-666.	5.5	76
83	Breast Cancer Neoantigens Can Induce CD8+ T-Cell Responses and Antitumor Immunity. Cancer Immunology Research, 2017, 5, 516-523.	3.4	74
84	CMDS: a population-based method for identifying recurrent DNA copy number aberrations in cancer from high-resolution data. Bioinformatics, 2010, 26, 464-469.	4.1	59
85	A pilot study of high-throughput, sequence-based mutational profiling of primary human acute myeloid leukemia cell genomes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14275-14280.	7.1	55
86	Re-sequencing Expands Our Understanding of the Phenotypic Impact of Variants at GWAS Loci. PLoS Genetics, 2014, 10, e1004147.	3.5	50
87	Clonal evolution revealed by whole genome sequencing in a case of primary myelofibrosis transformed to secondary acute myeloid leukemia. Leukemia, 2015, 29, 869-876.	7.2	44
88	Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation. Genome Medicine, 2021, 13, 56.	8.2	34
89	Low Frequency of Telomerase RNA Mutations Among Children With Aplastic Anemia or Myelodysplastic Syndrome. Journal of Pediatric Hematology/Oncology, 2006, 28, 450-453.	0.6	27
90	Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nature Communications, 2020, 11, 4748.	12.8	27

6

#	Article	IF	CITATIONS
91	Stem cell architecture drives myelodysplastic syndrome progression and predicts response to venetoclax-based therapy. Nature Medicine, 2022, 28, 557-567.	30.7	26
92	BreakTrans: uncovering the genomic architecture of gene fusions. Genome Biology, 2013, 14, R87.	9.6	25
93	Caspase-9 is required for normal hematopoietic development and protection from alkylator-induced DNA damage in mice. Blood, 2014, 124, 3887-3895.	1.4	20
94	Clinical outcomes and differential effects of PI3K pathway mutation in obese versus non-obese patients with cervical cancer. Oncotarget, 2018, 9, 4061-4073.	1.8	14
95	HPV transcript expression affects cervical cancer response to chemoradiation. JCI Insight, 2021, 6, .	5.0	12
96	BreakPoint Surveyor: a pipeline for structural variant visualization. Bioinformatics, 2017, 33, 3121-3122.	4.1	5
97	Pan-cancer analysis of somatic mutations across 21 neuroendocrine tumor types. Cell Research, 2018, 28, 601-604.	12.0	4
98	HPV-EM: an accurate HPV detection and genotyping EM algorithm. Scientific Reports, 2020, 10, 14340.	3.3	3
99	Clonal Evolution Revealed by Whole Genome Sequencing in a Case of Primary Myelofibrosis Transformed to Secondary Acute Myeloid Leukemia. Blood, 2012, 120, 706-706.	1.4	1
100	Personalized DNA neoantigen vaccine in combination with plasmid IL-12 for the treatment of a patient with anaplastic astrocytoma Journal of Clinical Oncology, 2021, 39, e14561-e14561.	1.6	0
101	DNA Sequencing of a Murine Acute Promyelocytic Leukemia (APL) Genome Using Next Generation Technology Blood, 2009, 114, 3965-3965.	1.4	0
102	Somatic mutational profile of Merkel cell carcinoma treated with immune checkpoint blockade: Preliminary results from a planned multiplatform analysis Journal of Clinical Oncology, 2019, 37, e21064-e21064.	1.6	0