Francesco Bonadonna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3689660/publications.pdf

Version: 2024-02-01

95 papers 3,758 citations

36 h-index 138484 58 g-index

95 all docs 95 docs citations

95 times ranked 3042 citing authors

#	Article	IF	CITATIONS
1	Wild skuas can use acoustic cues to locate hidden food. Animal Cognition, 2022, , 1.	1.8	2
2	Exclusion in the field: wild brown skuas find hidden food in the absence of visual information. Animal Cognition, 2021, 24, 867-876.	1.8	9
3	Not only pigeons: avian olfactory navigation studied by satellite telemetry. Ethology Ecology and Evolution, 2021, 33, 273-289.	1.4	9
4	Call rate, fundamental frequency, and syntax determine male-call attractiveness in blue petrels Halobaena caerulea. Behavioral Ecology and Sociobiology, 2021, 75, 1.	1.4	3
5	Contextual variations in calls of two nonoscine birds: the blue petrel Halobaena caerulea and the Antarctic prion Pachyptila desolata. Behavioral Ecology, 2021, 32, 769-779.	2.2	2
6	How king penguins advertise their sexual maturity. Animal Behaviour, 2021, 177, 253-267.	1.9	1
7	Taxonomy based on limited genomic markers may underestimate species diversity of rockhopper penguins and threaten their conservation. Diversity and Distributions, 2021, 27, 2277-2296.	4.1	4
8	Olfactory detection of trace amounts of plant volatiles is correlated with testosterone in a passerine bird. Hormones and Behavior, 2021, 136, 105045.	2.1	9
9	Genome-wide analyses reveal drivers of penguin diversification. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22303-22310.	7.1	47
10	Cryptic speciation in gentoo penguins is driven by geographic isolation and regional marine conditions: Unforeseen vulnerabilities to global change. Diversity and Distributions, 2020, 26, 958-975.	4.1	17
11	More than the eye can see: Genomic insights into the drivers of genetic differentiation in Royal/Macaroni penguins across the Southern Ocean. Molecular Phylogenetics and Evolution, 2019, 139, 106563.	2.7	21
12	Malesâ \in ™ calls carry information about individual identity and morphological characteristics of the caller in burrowing petrels. Journal of Avian Biology, 2019, 50, .	1.2	7
13	Pheomelanin-based coloration is related to individual quality and oxidative stress in blue petrels. Evolutionary Ecology, 2019, 33, 873-887.	1.2	2
14	Impact of long-term behavioural studies in the wild: the blue petrel, Halobaena caerulea, case at Kerguelen. Animal Behaviour, 2019, 151, 53-65.	1.9	2
15	Plumage microbiota covaries with the major histocompatibility complex in blue petrels. Molecular Ecology, 2019, 28, 833-846.	3.9	35
16	Sight or smell: which senses do scavenging raptors use to find food?. Animal Cognition, 2019, 22, 49-59.	1.8	19
17	Sex identification in King Penguins <i>Aptenodytes patagonicus </i> through morphological and acoustic cues. Ibis, 2018, 160, 755-768.	1.9	16
18	Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nature Climate Change, 2018, 8, 245-251.	18.8	95

#	Article	IF	CITATIONS
19	Structural organisation and dynamics in king penguin colonies. Journal Physics D: Applied Physics, 2018, 51, 164004.	2.8	11
20	Flexible migratory choices of Cory's shearwaters are not driven by shifts in prevailing air currents. Scientific Reports, 2018, 8, 3376.	3.3	13
21	Odour of King Penguin feathers analysed using direct thermal desorption discriminates between individuals but not sexes. Ibis, 2018, 160, 379-389.	1.9	10
22	Visual configuration of two species of Falconidae with different foraging ecologies. Ibis, 2018, 160, 54-61.	1.9	12
23	Editorial: The Importance of Olfaction in Intra- and Interspecific Communication. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	10
24	Visual field shape and foraging ecology in diurnal raptors. Journal of Experimental Biology, 2018, 221, .	1.7	20
25	Preen oil chemical composition encodes individuality, seasonal variation and kinship in black kites <i>Milvus migrans</i> . Journal of Avian Biology, 2018, 49, e01728.	1.2	15
26	Responses of king penguin <i>Aptenodytes patagonicus</i> adults and chicks to two foodâ€related odours. Journal of Avian Biology, 2017, 48, 235-242.	1.2	7
27	Odour-based discrimination of similarity at the major histocompatibility complex in birds. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162466.	2.6	56
28	Reproductive isolation maintains distinct genotypes, phenotypes and chemical signatures in mixed colonies of the two European Calonectris shearwaters (Procellariiformes: Procellariidae). Zoological Journal of the Linnean Society, 2017, 181, 711-726.	2.3	6
29	Marked phylogeographic structure of Gentoo penguin reveals an ongoing diversification process along the Southern Ocean. Molecular Phylogenetics and Evolution, 2017, 107, 486-498.	2.7	39
30	Eye Size, Fovea, and Foraging Ecology in Accipitriform Raptors. Brain, Behavior and Evolution, 2017, 90, 232-242.	1.7	34
31	Comment on "Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds―by Savoca <i>et al.</i> . Science Advances, 2017, 3, e1700526.	10.3	8
32	Blue petrels recognize the odor of their egg. Journal of Experimental Biology, 2017, 220, 3022-3025.	1.7	13
33	100 million years of multigene family evolution: origin and evolution of the avian MHC class IIB. BMC Genomics, 2017, 18, 460.	2.8	26
34	Chemical labels differ between two closely related shearwater taxa. Journal of Avian Biology, 2016, 47, 540-551.	1.2	14
35	Visual acuity in an opportunistic raptor, the chimango caracara (Milvago chimango). Physiology and Behavior, 2016, 157, 125-128.	2.1	18
36	Visual abilities in two raptors with different ecology. Journal of Experimental Biology, 2016, 219, 2639-49.	1.7	39

#	Article	IF	Citations
37	Guidelines for Collecting and Extracting Avian Odors in a Remote Field: Case Study of a Subantarctic Seabird., 2016,, 435-460.		1
38	Olfaction and topography, but not magnetic cues, control navigation in a pelagic seabird: displacements with shearwaters in the Mediterranean Sea. Scientific Reports, 2015, 5, 16486.	3.3	57
39	Mediterranean storm petrels rely on nest position for homing after migration: a test with artificial nestboxes. Animal Behaviour, 2015, 107, 97-104.	1.9	4
40	King penguins can detect two odours associated with conspecifics. Journal of Experimental Biology, 2015, 218, 3374-6.	1.7	5
41	The effect of experienced individuals on navigation by king penguin chick pairs. Animal Behaviour, 2015, 104, 69-78.	1.9	10
42	Contrasting population trends at seabirds colonies: is food limitation a factor in Norway?. Journal of Ornithology, 2015, 156, 397-406.	1.1	4
43	The perfume of reproduction in birds: Chemosignaling in avian social life. Hormones and Behavior, 2015, 68, 25-42.	2.1	102
44	Differences in olfactory species recognition in the females of two Australian songbird species. Behavioral Ecology and Sociobiology, 2014, 68, 1819-1827.	1.4	44
45	Olfactory foraging in temperate waters: Sensitivity to dimethylsulfide by shearwaters in the Atlantic Ocean and Mediterranean Sea. Journal of Experimental Biology, 2014, 217, 1701-9.	1.7	26
46	Resolution of navigational conflict in king penguin chicks. Animal Behaviour, 2014, 93, 221-228.	1.9	12
47	Oceanic navigation in Cory's shearwaters: evidence for a crucial role of olfactory cues for homing after displacement. Journal of Experimental Biology, 2013, 216, 2798-2805.	1.7	113
48	Maleâ€Biased Mate Competition in King Penguin Trio Parades. Ethology, 2013, 119, 389-396.	1.1	9
49	The invisible cues that guide king penguin chicks home. The use of magnetic and acoustic cues during orientation and short-range navigation. Journal of Experimental Biology, 2013, 216, 1491-500.	1.7	4
50	Besides Colours and Songs, Odour is the New Black of Avian Communication., 2013,, 325-339.		19
51	Back home at night or out until morning? Nycthemeral variations in homing of anosmic Cory's shearwaters in a diurnal colony. Journal of Experimental Biology, 2013, 216, 1430-3.	1.7	17
52	Potential Semiochemical Molecules from Birds: A Practical and Comprehensive Compilation of the Last 20 Years Studies. Chemical Senses, 2012, 37, 3-25.	2.0	78
53	Multi-scale foraging variability in Northern gannet (Morus bassanus) fuels potential foraging plasticity. Marine Biology, 2012, 159, 2743.	1.5	36
54	Major histocompatibility complex class II compatibility, but not class I, predicts mate choice in a bird with highly developed olfaction. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4457-4463.	2.6	87

#	Article	IF	Citations
55	Kin recognition and inbreeding avoidance in wild birds: the first evidence for individual kin-related odour recognition. Animal Behaviour, 2012, 84, 509-513.	1.9	121
56	GPS and time-depth loggers reveal underwater foraging plasticity in a flying diver, the Cape Cormorant. Marine Biology, 2012, 159, 373-387.	1.5	24
57	Flying at No Mechanical Energy Cost: Disclosing the Secret of Wandering Albatrosses. PLoS ONE, 2012, 7, e41449.	2.5	82
58	From preen secretions to plumage: the chemical trajectory of blue petrels' <i>Halobaena caerulea</i> social scent. Journal of Avian Biology, 2011, 42, 29-38.	1.2	54
59	Characterization of MHC class I and II genes in a subantarctic seabird, the blue petrel, Halobaena caerulea (Procellariiformes). Immunogenetics, 2011, 63, 653-666.	2.4	42
60	Comments on Recent Work by Zhang and Colleagues: "Uropygial Gland-Secreted Alkanols Contribute to Olfactory Sex Signals in Budgerigars". Chemical Senses, 2011, 36, 3-4.	2.0	11
61	Chemical kin label in seabirds. Biology Letters, 2011, 7, 807-810.	2.3	25
62	Do penguins dare to walk at night? Visual cues influence king penguin colony arrivals and departures. Behavioral Ecology and Sociobiology, 2010, 64, 1145-1156.	1.4	12
63	Patterns of variation of serum oxidative stress markers in two seabird species. Polar Research, 2010, 29, 30-35.	1.6	23
64	One House Two Families: Petrel Squatters Get a Sniff of Low ost Breeding Opportunities. Ethology, 2010, 116, 176-182.	1.1	23
65	Detective mice assess relatedness in baboons using olfactory cues. Journal of Experimental Biology, 2010, 213, 1399-1405.	1.7	18
66	Species, Gender, and Identity: Cracking Petrels' Sociochemical Code. Chemical Senses, 2010, 35, 309-321.	2.0	85
67	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 June 2010 – 31 July 2010. Molecular Ecology Resources, 2010, 10, 1106-1108.	4.8	48
68	Orientation in a crowded environment: can King Penguin (<i>Aptenodytes patagonicus</i>) chicks find their crel€ches after a displacement?. Journal of Experimental Biology, 2009, 212, 210-216.	1.7	7
69	Atypical homing or self-odour avoidance? Blue petrels (Halobaena caerulea) are attracted to their mate's odour but avoid their own. Behavioral Ecology and Sociobiology, 2009, 63, 537-542.	1.4	46
70	Olfaction in Petrels. Annals of the New York Academy of Sciences, 2009, 1170, 428-433.	3.8	19
71	Olfactory Sex Recognition Investigated in Antarctic Prions. PLoS ONE, 2009, 4, e4148.	2.5	23
72	GPS tracking of the foraging movements of Manx Shearwaters <i>Puffinus puffinus </i> breeding on Skomer Island, Wales. Ibis, 2008, 150, 462-473.	1.9	97

#	Article	IF	CITATIONS
73	Wilson's Storm Petrels <i>Oceanites oceanicus</i> Recognise the Olfactory Signature of Their Mate. Ethology, 2007, 113, 1228-1232.	1.1	27
74	Individual Odor Recognition in Birds: An Endogenous Olfactory Signature on Petrels' Feathers?. Journal of Chemical Ecology, 2007, 33, 1819-1829.	1.8	85
75	Orientation in the wandering albatross: interfering with magnetic perception does not affect orientation performance. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 489-495.	2.6	65
76	Sensitivity to dimethyl sulphide suggests a mechanism for olfactory navigation by seabirds. Biology Letters, 2005, 1, 303-305.	2.3	125
77	Partner-Specific Odor Recognition in an Antarctic Seabird. Science, 2004, 306, 835-835.	12.6	210
78	Successful homing of magnet-carrying white-chinned petrels released in the open sea. Animal Behaviour, 2003, 65, 729-734.	1.9	54
79	Scent of a nest: discrimination of own-nest odours in Antarctic prions, Pachyptila desolata. Behavioral Ecology and Sociobiology, 2003, 54, 174-178.	1.4	56
80	Homing in pelagic birds: a pilot experiment with white-chinned petrels released in the open sea. Behavioural Processes, 2003, 61, 95-100.	1.1	20
81	Orientation in "Featureless―Environments: The Extreme Case of Pelagic Birds. , 2003, , 367-377.		26
82	Evidence for nest-odour recognition in two species of diving petrel. Journal of Experimental Biology, 2003, 206, 3719-3722.	1.7	78
83	A comparison of the olfactory abilities of three species of procellariiform chicks. Journal of Experimental Biology, 2003, 206, 1615-1620.	1.7	52
84	GPS Tracking of Foraging Albatrosses. Science, 2002, 295, 1259-1259.	12.6	200
85	Drinking behaviour and water turnover rates of Antarctic fur seal pups: implications for the estimation of milk intake by isotopic dilution. Comparative Biochemistry and Physiology Part A, Molecular & Engrative Physiology, 2002, 132, 321-331.	1.8	13
86	Magnetic cues: are they important in Black-browed Albatross Diomedea melanophris orientation?. Ibis, 2002, 145, 152-155.	1.9	34
87	Smelling home: a good solution for burrow-finding in nocturnal petrels?. Journal of Experimental Biology, 2002, 205, 2519-2523.	1.7	73
88	Smelling home: a good solution for burrow-finding in nocturnal petrels?. Journal of Experimental Biology, 2002, 205, 2519-23.	1.7	50
89	Spatial distribution of foraging in female Antarctic fur seals Arctocephalus gazella in relation to oceanographic variables: a scale-dependent approach using geographic information systems. Marine Ecology - Progress Series, 2001, 219, 251-264.	1.9	173
90	Foraging ground fidelity and route-choice tactics of a marine predator: the Antarctic fur seal Arctocephalus gazella. Marine Ecology - Progress Series, 2001, 223, 287-297.	1.9	77

#	Article	IF	CITATIONS
91	Foraging routes of Antarctic fur seals (Arctocephalus gazella) investigated by the concurrent use of satellite tracking and time-depth recorders. Polar Biology, 2000, 23, 149-159.	1.2	39
92	Foraging habitat and diving activity of lactating Subantarctic fur seals in relation to sea-surface temperatures at Amsterdam Island. Marine Ecology - Progress Series, 2000, 196, 291-304.	1.9	78
93	Foraging Flights of Breeding Thick-Billed Murres (Uria lomvia) as Revealed by Bird-Borne Direction Recorders. Auk, 1998, 115, 57-66.	1.4	87
94	Behavioural effects of ablations of the presumed â€~prefrontal cortex' or the corticoid in pigeons. Behavioural Brain Research, 1996, 78, 155-162.	2.2	38
95	Long-distance migration and homing after displacement in the green turtle (Chelonia mydas): a satellite tracking study. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1996, 178, 447.	1.6	59