List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/36893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Folding of phosphodiester-linked donor–acceptor oligomers into supramolecular nanotubes in water. Chemical Communications, 2021, 57, 4130-4133.	2.2	11
2	Diagnostic Performance of a Magnetic Field-Enhanced Agglutination Readout in Detecting Either Viral Genomes or Host Antibodies in Arbovirus Infection. Microorganisms, 2021, 9, 674.	1.6	3
3	Charge-Transfer Interactions Stabilize G-Quadruplex-Forming Thrombin Binding Aptamers and Can Improve Their Anticoagulant Activity. International Journal of Molecular Sciences, 2021, 22, 9510.	1.8	11
4	Magnetic Field-Enhanced Agglutination Readout Combined With Isothermal Reverse Transcription Recombinase Polymerase Amplification for Rapid and Sensitive Molecular Detection of Dengue Virus. Frontiers in Chemistry, 2021, 9, 817246.	1.8	1
5	Fine-tuning the properties of the thrombin binding aptamer through cyclization: Effect of the 5′-3′ connecting linker on the aptamer stability and anticoagulant activity. Bioorganic Chemistry, 2020, 94, 103379.	2.0	23
6	Rapid and specific DNA detection by magnetic field-enhanced agglutination assay. Talanta, 2020, 219, 121344.	2.9	9
7	Modified Galacto―or Fucoâ€Clusters Exploiting the Siderophore Pathway to Inhibit the LecA―or LecBâ€Associated Virulence of Pseudomonas aeruginosa. ChemBioChem, 2020, 21, 3433-3448.	1.3	3
8	Design, Synthesis and Characterization of Cyclic NU172 Analogues: A Biophysical and Biological Insight. International Journal of Molecular Sciences, 2020, 21, 3860.	1.8	23
9	Deciphering multivalent glycocluster–lectin interactions through AFM characterization of the self-assembled nanostructures. Soft Matter, 2019, 15, 7211-7218.	1.2	1
10	Solid Supports for the Synthesis of 3′-Aminooxy Deoxy- or Ribo-oligonucleotides and Their 3′-Conjugation by Oxime Ligation. Journal of Organic Chemistry, 2019, 84, 14854-14860.	1.7	8
11	Stability Is Not Everything: The Case of the Cyclisation of a Thrombinâ€Binding Aptamer. ChemBioChem, 2019, 20, 1789-1794.	1.3	22
12	Thermolytic Reagents to Synthesize 5′―or 3′â€Mono(thio)phosphate Oligodeoxynucleotides or 3′â€m oligodeoxynucleotides. European Journal of Organic Chemistry, 2019, 2019, 2832-2842.	odified	3
13	An Innovative Multiplexed and Flexible Molecular Approach for the Differential Detection of Arboviruses. Journal of Molecular Diagnostics, 2019, 21, 81-88.	1.2	3
14	Screening of a Library of Oligosaccharides Targeting Lectin LecB of Pseudomonas Aeruginosa and Synthesis of High Affinity Oligoglycoclusters. Molecules, 2018, 23, 3073.	1.7	8
15	The anti-adhesive effect of glycoclusters on <i>Pseudomonas aeruginosa</i> bacteria adhesion to epithelial cells studied by AFM single cell force spectroscopy. Nanoscale, 2018, 10, 12771-12778.	2.8	22
16	Design and Synthesis of Galactosylated Bifurcated Ligands with Nanomolar Affinity for Lectin LecA from <i>Pseudomonas aeruginosa</i> . ChemBioChem, 2017, 18, 1036-1047.	1.3	22
17	Improved Performance of DNA Microarray Multiplex Hybridization Using Probes Anchored at Several Points by Thiol–Ene or Thiol–Yne Coupling Chemistry. Bioconjugate Chemistry, 2017, 28, 496-506. 	1.8	20
18	Phthalimide–Oxy Derivatives for 3′―or 5′â€Conjugation of Oligonucleotides by Oxime Ligation and Circularization of DNA by "Bis―or Trisâ€Click―Oxime Ligation. European Journal of Organic Chemistry, 2017, 2017, 6931-6941.	1.2	6

#	Article	IF	CITATIONS
19	Fluorescent Thrombin Binding Aptamer-Tagged Nanoparticles for an Efficient and Reversible Control of Thrombin Activity. ACS Applied Materials & Interfaces, 2017, 9, 35574-35587.	4.0	36
20	Glycoclusters with Additional Functionalities for Binding to the LecA Lectin from <i>Pseudomonas aeruginosa</i> . ChemistrySelect, 2017, 2, 10420-10427.	0.7	9
21	Toward the Rational Design of Galactosylated Glycoclusters That Target <i>Pseudomonas aeruginosa</i> Lectin A (LecA): Influence of Linker Arms That Lead to Lowâ€Nanomolar Multivalent Ligands. Chemistry - A European Journal, 2016, 22, 11785-11794.	1.7	29
22	Effects of the Surface Densities of Glycoclusters on the Determination of Their IC ₅₀ and <i>K</i> _d Value Determination by Using a Microarray. ChemBioChem, 2015, 16, 2329-2336.	1.3	12
23	Mannose-centered aromatic galactoclusters inhibit the biofilm formation of Pseudomonas aeruginosa. Organic and Biomolecular Chemistry, 2015, 13, 8433-8444.	1.5	35
24	Hetero lick Conjugation of Oligonucleotides with Glycosides Using Bifunctional Phosphoramidites. European Journal of Organic Chemistry, 2015, 2015, 2921-2927.	1.2	14
25	Importance of topology for glycocluster binding to Pseudomonas aeruginosa and Burkholderia ambifaria bacterial lectins. Organic and Biomolecular Chemistry, 2015, 13, 11244-11254.	1.5	24
26	Assessment of the Full Compatibility of Copper(I)â€Catalyzed Alkyneâ€Azide Cycloaddition and Oxime Click Reactions for bisâ€Labelling of Oligonucleotides. ChemistryOpen, 2015, 4, 169-173.	0.9	2
27	Innovative Chemistry for Synthesis of Regular RNA, 5′-Triphosphate RNA, or 5′-Capped RNA. , 2014, , 563-589.		0
28	DNA directed immobilization glycocluster array: applications and perspectives. Current Opinion in Chemical Biology, 2014, 18, 46-54.	2.8	16
29	Structure Binding Relationship of Galactosylated Glycoclusters toward Pseudomonas aeruginosa Lectin LecA Using a DNA-Based Carbohydrate Microarray. Bioconjugate Chemistry, 2014, 25, 379-392.	1.8	36
30	Synthesis of Galactoclusters by Metalâ€Free Thiol "Click Chemistry―and Their Binding Affinities for <i>Pseudomonas aeruginosa</i> Lectin LecA. European Journal of Organic Chemistry, 2014, 2014, 7621-7630.	1.2	17
31	The influence of the aromatic aglycon of galactoclusters on the binding of LecA: a case study with O-phenyl, S-phenyl, O-benzyl, S-benzyl, O-biphenyl and O-naphthyl aglycons. Organic and Biomolecular Chemistry, 2014, 12, 9166-9179.	1.5	28
32	Synthesis of oligonucleotide heteroglycocluster conjugates combining two click reactions. , 2014, , .		0
33	Fluorescence Enhancement upon G-Quadruplex Folding: Synthesis, Structure, and Biophysical Characterization of a Dansyl/Cyclodextrin-Tagged Thrombin Binding Aptamer. Bioconjugate Chemistry, 2013, 24, 1917-1927.	1.8	35
34	Development of Innovative and Versatile Polythiol Probes for Use on ELOSA or Electrochemical Biosensors: Application in Hepatitis C Virus Genotyping. Analytical Chemistry, 2013, 85, 9204-9212.	3.2	19
35	Synthesis of branched-phosphodiester and mannose-centered fucosylated glycoclusters and their binding studies with Burkholderia ambifaria lectin (BambL). RSC Advances, 2013, 3, 19515.	1.7	18
36	Glycoclusters on oligonucleotide and PNA scaffolds: synthesis and applications. Chemical Society Reviews, 2013, 42, 4557-4573.	18.7	57

#	Article	IF	CITATIONS
37	Synthesis of Monoconjugated and Multiply Conjugated Oligonucleotides by "Click Thiol― Thiolâ€Michaelâ€Type Additions and by Combination with CuAAC "Click Huisgen― European Journal of Organic Chemistry, 2013, 2013, 465-473.	1.2	20
38	Quantitative analysis (Kd and IC50) of glycoconjugates interactions with a bacterial lectin on a carbohydrate microarray with DNA Direct Immobilization (DDI). Biosensors and Bioelectronics, 2013, 40, 153-160.	5.3	28
39	SELF-ASSEMBLY ARCHITECTURES OF NEW DNA-BASED STRUCTURES IN AIR AND IN LIQUIDS ANALYZED BY ATOMIC FORCE MICROSCOPY. International Journal of Nanoscience, 2012, 11, 1240017.	0.4	1
40	Synthesis of 5′ cap-0 and cap-1 RNAs using solid-phase chemistry coupled with enzymatic methylation by human (guanine- <i>N</i> ⁷)-methyl transferase. Rna, 2012, 18, 856-868.	1.6	47
41	DNA glycoclusters and DNA-based carbohydrate microarrays: From design to applications. RSC Advances, 2012, 2, 12043.	1.7	24
42	Synthesis of Homo- and Heterofunctionalized Glycoclusters and Binding to Pseudomonas aeruginosa Lectins PA-IL and PA-IIL. Journal of Organic Chemistry, 2012, 77, 7620-7626.	1.7	34
43	Synthesis of a Library of Fucosylated Glycoclusters and Determination of their Binding toward Pseudomonas aeruginosa Lectin B (PA-IIL) Using a DNA-Based Carbohydrate Microarray. Bioconjugate Chemistry, 2012, 23, 1534-1547.	1.8	51
44	Solidâ€Phase Chemical Synthesis of 5′â€Triphosphate DNA, RNA, and Chemically Modified Oligonucleotides. Current Protocols in Nucleic Acid Chemistry, 2012, 50, Unit1.28.	0.5	19
45	Bis―and Trisâ€Alkyne Phosphoramidites for Multiple 5â€²â€Łabeling of Oligonucleotides by Click Chemistry. European Journal of Organic Chemistry, 2012, 2012, 1851-1856.	1.2	22
46	Glycoarray by DNA-Directed Immobilization. Methods in Molecular Biology, 2012, 808, 195-219.	0.4	8
47	Multiplexed binding determination of seven glycoconjugates for Pseudomonas aeruginosa Lectin I (PA-IL) using a DNA-based carbohydrate microarray. Chemical Communications, 2011, 47, 8826.	2.2	22
48	Synthesis of a Glycomimetic Oligonucleotide Conjugate by 1,3-Dipolar Cycloaddition. Methods in Molecular Biology, 2011, 751, 167-193.	0.4	2
49	Photopotential Imaging on Functionalized Surfaces Dedicated to Label-Free Detection of Biomolecular Interactions. Procedia Engineering, 2011, 25, 932-935.	1.2	0
50	Oligosaccharides-Protein Interaction Study using Microarrays with DDI Immobilisation. Procedia Engineering, 2011, 25, 1553-1556.	1.2	0
51	Electrochemical detection of nucleic acids using pentaferrocenyl phosphoramidate α-oligonucleotides. New Journal of Chemistry, 2011, 35, 893.	1.4	20
52	Measurement of Enzymatic Activity and Specificity of Human and Avian Influenza Neuraminidases from Whole Virus by Glycoarray and MALDIâ€TOF Mass Spectrometry. ChemBioChem, 2011, 12, 2071-2080.	1.3	12
53	Oligonucleotide glyco-centered galactosyl cluster conjugates synthesized by multi-click and phosphoramidite chemistries and their affinity for Pseudomonas aeruginosa lectin 1. , 2011, , .		0
54	Pentaferrocenyl phosphoramidate $\hat{l}\pm$ -oligonucleotides for electrochemical detection of nucleic acids. , 2011, , .		0

#	Article	IF	CITATIONS
55	Oligonucleotide Sequential Bis-Conjugation via Clickâ^'Oxime and Clickâ^'Huisgen Procedures. Journal of Organic Chemistry, 2010, 75, 3927-3930.	1.7	39
56	5′-Bis-conjugation of Oligonucleotides by Amidative Oxidation and Click Chemistry. Journal of Organic Chemistry, 2010, 75, 6689-6692.	1.7	17
57	From Anionic to Cationic <i>αâ€</i> Anomeric Oligodeoxynucleotides. Chemistry and Biodiversity, 2010, 7, 494-535.	1.0	17
58	Oligonucleotide Carbohydrate-Centered Galactosyl Cluster Conjugates Synthesized by Click and Phosphoramidite Chemistries. Bioconjugate Chemistry, 2010, 21, 1520-1529.	1.8	43
59	3′-Deoxy Phosphoramidate Dinucleosides as Improved Inhibitors of Hepatitis C Virus Subgenomic Replicon and NS5B Polymerase Activity. Journal of Medicinal Chemistry, 2010, 53, 6608-6617.	2.9	13
60	Efficient Solid-Phase Chemical Synthesis of 5′-Triphosphates of DNA, RNA, and their Analogues. Organic Letters, 2010, 12, 2190-2193.	2.4	56
61	Carbohydrates as Recognition Receptors in Biosensing Applications. , 2010, , 275-341.		2
62	Design of Triazoleâ€Tethered Glycoclusters Exhibiting Three Different Spatial Arrangements and Comparative Study of their Affinities towards PAâ€IL and RCA 120 by Using a DNAâ€Based Glycoarray. ChemBioChem, 2009, 10, 1369-1378.	1.3	69
63	DNA-directed immobilisation of glycomimetics for glycoarrays application: Comparison with covalent immobilisation, and development of an on-chip IC50 measurement assay. Biosensors and Bioelectronics, 2009, 24, 2515-2521.	5.3	42
64	Î'-Di-carboxybutyl phosphoramidate of 2â€2-deoxycytidine-5â€2-monophosphate as substrate for DNA polymerization by HIV-1 reverse transcriptase. Bioorganic and Medicinal Chemistry, 2009, 17, 7008-7014.	1.4	29
65	Synthesis of Mannose and Galactose Oligonucleotide Conjugates by Bi-click chemistry. Journal of Organic Chemistry, 2009, 74, 1218-1222.	1.7	84
66	Azide Solid Support for 3′-Conjugation of Oligonucleotides and Their Circularization by Click Chemistry. Journal of Organic Chemistry, 2009, 74, 6837-6842.	1.7	70
67	Carbohydrateâ€Oligonucleotide Conjugates. Current Protocols in Nucleic Acid Chemistry, 2009, 39, Unit4.38.	0.5	1
68	Specific recognition of lectins by oligonucleotide glycoconjugates and sorting on a DNA microarray. Chemical Communications, 2009, , 6795.	2.2	28
69	Deoxygenation of 5-O-benzoyl-1,2-isopropylidene-3-O-imidazolylthiocarbonyl-α-d-xylofuranose using dimethyl phosphite: an efficient alternate method towards a 3′-deoxynucleoside glycosyl donor. Tetrahedron Letters, 2008, 49, 3288-3290.	0.7	7
70	Phosphoramidate Dinucleosides as Hepatitis C Virus Polymerase Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 5745-5757.	2.9	12
71	Combinatorial and Automated Synthesis of Phosphodiester Galactosyl Cluster on Solid Support by Click Chemistry Assisted by Microwaves. Journal of Organic Chemistry, 2008, 73, 6014-6017.	1.7	38
72	New Strategies for Cyclization and Bicyclization of Oligonucleotides by Click Chemistry Assisted by Microwaves. Journal of Organic Chemistry, 2008, 73, 191-200.	1.7	76

#	Article	IF	CITATIONS
73	Use of DNA and Click chemistries to synthesize combinatorial libraries of galactosyl-phosphodiester clusters. Nucleic Acids Symposium Series, 2008, 52, 283-284.	0.3	0
74	Click chemistry and Oligonucleotides: How a simple reaction can do so much. Nucleic Acids Symposium Series, 2008, 52, 47-48.	0.3	8
75	Inverse solid phase synthesis of oligonucleotides. , 2008, , .		3
76	A Universal and Recyclable Solid Support for Oligonucleotide Synthesis. Current Protocols in Nucleic Acid Chemistry, 2007, 30, Unit 3.16.	0.5	1
77	Fucosylated Pentaerythrityl Phosphodiester Oligomers (PePOs):  Automated Synthesis of DNA-Based Glycoclusters and Binding to Pseudomonas aeruginosa Lectin (PA-IIL). Bioconjugate Chemistry, 2007, 18, 1637-1643.	1.8	96
78	DNA-Based Carbohydrate Biochips: A Platform for Surface Glyco-Engineering. Angewandte Chemie - International Edition, 2007, 46, 2398-2402.	7.2	138
79	Conformational and Chiral Selection of Oligonucleotides. Chemistry and Biodiversity, 2007, 4, 803-817.	1.0	17
80	Convenient synthesis of N2-isobutyryl-2′-O-methyl guanosine by efficient alkylation of O6-trimethylsilylethyl-3′,5′-di-tert-butylsilanediyl guanosine. Tetrahedron, 2007, 63, 11174-11178.	1.0	10
81	An efficient reagent for 5′-azido oligonucleotide synthesis. Tetrahedron Letters, 2007, 48, 8795-8798.	0.7	27
82	5-Propynylamino α-deoxyuridine promotes DNA duplex stabilization of anionic and neutral but not cationic α-oligonucleotides. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 951-954.	1.0	6
83	Microwave Assisted "Click―Chemistry for the Synthesis of Multiple Labeled-Carbohydrate Oligonucleotides on Solid Support. Journal of Organic Chemistry, 2006, 71, 4700-4702.	1.7	188
84	Solution-Phase Synthesis of Di- and Trinucleotides Using Polymer-Supported Reagents. , 2006, Chapter 3, 3.14.1-3.14.15.		0
85	Use of a solid-supported coupling reagent for a selective phosphitylation of the primary alcohol of N2-isobutyryl-2′-deoxy or 2′-O-methyl guanosine. Tetrahedron Letters, 2006, 47, 8379-8382.	0.7	6
86	A versatile reagent for the synthesis of 5′-phosphorylated, 5′-thiophosphorylated or 5′-phosphoramidate-conjugated oligonucleotides. Tetrahedron Letters, 2006, 47, 8867-8871.	0.7	18
87	Solution-Phase Synthesis of Phosphorothioate Oligonucleotides Using a Solid-Supported Acyl Chloride withH-Phosphonate Chemistry. European Journal of Organic Chemistry, 2006, 2006, 436-448.	1.2	15
88	SILYL PROTECTING GROUPS FOR OLIGONUCLEOTIDE SYNTHESIS REMOVED BY A ZnBr2 TREATMENT. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1009-1013.	0.4	10
89	Optimized Synthesis of Functionalized Fluorescent Oligodeoxynucleotides for Protein Labeling. Bioconjugate Chemistry, 2005, 16, 465-470.	1.8	8
90	MICROWAVES SYNTHESIS OF SOLID SUPPORTS FOR THE SYNTHESIS OF 3â€ ² -AMINOALKYL OLIGODEOXYNUCLEOTIDES. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 623-627.	0.4	1

#	Article	IF	CITATIONS
91	Universal Solid Supports for the Synthesis of Oligonucleotides via a Transesterification ofH-phosphonate Diester Linkage. Journal of Organic Chemistry, 2005, 70, 9198-9206.	1.7	17
92	High-Yield Solution-Phase Synthesis of Di- and Trinucleotide Blocks Assisted by Polymer-Supported Reagents. Organic Letters, 2005, 7, 3485-3488.	2.4	26
93	Solution phase synthesis of oligonucleotides by the phosphoramidite method using solid supported reagents. , 2005, , .		0
94	Universal and reusable solide support thanks to a H-phosphonate diester linkage for the synthesis of single or multiple oligonucleotides. , 2005, , .		0
95	H-Phosphonate oligonucleotides from phosphoramidite chemistry. Tetrahedron Letters, 2004, 45, 3745-3748.	0.7	12
96	Lewis acid deprotection of silyl-protected oligonucleotides and base-sensitive oligonucleotide analogues. Tetrahedron Letters, 2004, 45, 6287-6290.	0.7	12
97	Fluoride-Labile Protecting Groups for the Synthesis of Base-Sensitive Methyl-SATE Oligonucleotide Prodrugs. European Journal of Organic Chemistry, 2003, 2003, 2327-2335.	1.2	17
98	Synthesis of Oligonucleotide Prodrugs BearingN-Acetyl Nucleobases. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1243-1245.	0.4	2
99	Uptake and Quantification of Intracellular Concentration of Lipophilic Pro-Oligonucleotides in HeLa Cells. Oligonucleotides, 2002, 12, 33-41.	4.4	28
100	Liquid-Phase Synthesis and Characterization of a Conjugated Chimeric Oligonucleotide-PEG-Peptide. European Journal of Organic Chemistry, 2002, 2002, 3473-3480.	1.2	13
101	Use of MALDI-TOF mass spectrometry to monitor solid-phase synthesis of oligonucleotides. Analytical and Bioanalytical Chemistry, 2002, 374, 57-63.	1.9	10
102	Triple, MPEG-Conjugated, Helix-Forming Oligonucleotides (TRIPEGXs):  Liquid-Phase Synthesis of Natural and Chimeric "All-Purine―Sequences Linked to High Molecular Weight Poly(ethylene glycols). Bioconjugate Chemistry, 2001, 12, 719-725.	1.8	17
103	DIRECT MALDI-TOF MS ANALYSIS OF OLIGONUCLEOTIDES ON SOLID SUPPORT THROUGH A PHOTOLABILE LINKER. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 963-966.	0.4	7
104	POLYIMIDAZOLE CONJUGATED OLIGONUCLEOTIDES REACH THE NUCLEUS OF HELA CELLS. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 805-808.	0.4	4
105	Kinetics study of the biotransformation of an oligonucleotide prodrug in cells extract by matrix-assisted laser desorption–ionization time-of-flight mass spectrometry. Biomedical Applications, 2001, 753, 123-130.	1.7	16
106	Use of 2-(tert-butyldiphenylsilyloxymethyl) benzoyl as N-protecting group for the synthesis of prooligonucleotides. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2813-2816.	1.0	9
107	CELLULAR UPTAKE AND INTRACELLULAR QUANTIFICATION OF FLUORESCENT LABELED T20ME-SATE PROOLIGONUCLEOTIDES. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1165-1168.	0.4	1
108	KINETICS STUDY OF THE BIOTRANSFORMATION OF AN OLIGONUCLEOTIDE PRODRUG IN CELLS EXTRACT BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME-OF-FLIGHT MASS SPECTROMETRY. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1159-1163.	0.4	3

#	Article	IF	CITATIONS
109	A mild method for fluorescein labeling of base-sensitive oligonucleotides on solid support. Tetrahedron Letters, 2000, 41, 7317-7321.	0.7	7
110	Prooligonucleotides Exhibit Less Serum-Protein Binding Than Phosphodiester and Phosphorothioate Oligonucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 995-1003.	0.4	2
111	Lipophilic pro-oligonucleotides are rapidly and efficiently internalized in HeLa cells. Nucleic Acids Research, 1999, 27, 4071-4076.	6.5	29
112	γ-Aminobutyric Acid as Enzymolabile Groups for the Pro-oligonucleotide Approach. Nucleosides & Nucleotides, 1999, 18, 1407-1408.	0.5	2
113	4′-Thio-RNA: Synthesis, Base Pairing Properties and Interaction with Dimerization Initiation Site of HIV-1. Nucleosides & Nucleotides, 1999, 18, 1423-1424.	0.5	8
114	The Prooligonucleotide Approach: Synthesis of Mixed Phosphodiester and SATE Phosphotriester Prooligonucleotides UsingH-Phosphonate and Phosphoramidite Chemistries. European Journal of Organic Chemistry, 1999, 1999, 2353-2358.	1.2	20
115	The Prooligonucleotide Approach: Synthesis of Mixed SATE-Phosphotriester Phosphodiester Oligonucleotides. Nucleosides & Nucleotides, 1999, 18, 1433-1434.	0.5	4
116	Triplex Formation of α-Oligodeoxynucleotides Containing 5-Me-α-dC(N-4-Spermine). Nucleosides & Nucleotides, 1999, 18, 1631-1632.	0.5	0
117	The Prooligonucleotide Approach: Synthesis of Mixed Phosphodiester and SATE Phosphotriester Prooligonucleotides Using H-Phosphonate and Phosphoramidite Chemistries. , 1999, 1999, 2353.		2
118	Synthesis of fluorescent labeled lipophilic prooligonucleotides and their rapid and efficient uptake in HeLa cells. , 1999, , .		0
119	α-Oligodeoxynucleotides containing 5-propynyl analogs of α-deoxyuridine and α-deoxycytidine: Synthesis and base pairing properties. Tetrahedron, 1998, 54, 71-82.	1.0	17
120	First synthesis of alternating SATE-phosphotriester/ phosphodiester prooligonucleotides on solid support. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2913-2918.	1.0	16
121	The pro-oligonucleotide approach: solid phase synthesis and preliminary evaluation of model pro-dodecathymidylates. Nucleic Acids Research, 1998, 26, 2069-2074.	6.5	63
122	Comparative Stability of Triple Helices Containing Modified DNA or RNA Pyrimidine Strands. Nucleosides & Nucleotides, 1998, 17, 1949-1952.	0.5	0
123	The Pro-Oligonucleotide Approach: Chimeric Dodecamers Bearing Six Bioreversible Protecting Groups. Nucleosides & Nucleotides, 1997, 16, 1213-1214.	0.5	1
124	Comparative Stability of Eight Different Triple Helices Formed by Differently Modified DNA or RNA Pyrimidine Strands and a DNA Hairpin. Oligonucleotides, 1997, 7, 327-334.	4.4	10
125	The prooligonucleotide approach IV : Synthesis of chimeric prooligonucleotides with 6 enzymolabile masking groups and unexpected desulfurization side reaction. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 263-268.	1.0	8
126	The pro-oligonucleotide approach. V: Influence of the phosphorus atom environment on the hydrolysis of enzymolabile dinucleoside phosphotriesters. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 851-854.	1.0	13

#	Article	IF	CITATIONS
127	Boundary between DNA and enantio-DNA as a mimic of B-Z junction. Tetrahedron Letters, 1997, 38, 93-96.	0.7	15
128	Oligonucleotide Mimics for Antisense Therapeutics:Â Solution Phase and Automated Solid-Support Synthesis of MMI Linked Oligomers. Journal of the American Chemical Society, 1996, 118, 255-256.	6.6	67
129	The prooligonucleotide approach. III: Synthesis and bioreversibility of a chimeric phosphorodithioate prooligonucleotide. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 457-462.	1.0	13
130	Interaction of Escherichia Coli Ribonuclease H With Hybrid Duplexes Containing 2′-Deoxyxylotrymidine, 2′-Deoxy-2′ Fluorouridine or Alpha-Thymidine. Nucleosides & Nucleotides, 1996, 1 1545-1558.	59.5	1
131	4′-Thio-RNA: Synthesis of Mixed Base 4′-ThioOligoribonucleotides, Nuclease Resistance, and Base Pairing Properties with Complementary Single and Double Strand. Antisense Research and Development, 1995, 5, 167-174.	3.3	26
132	The prooligonucleotide approach: II. Synthesis and stability studies of chimeric oligonucleotide models. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 1441-1444.	1.0	12
133	Triple Helix Forming α-Oligonucleotides Containing 5-Methylcytosine and/or 5-Bromouracil. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 975-977.	0.4	3
134	Synthesis, Biophysical and Biological Evaluations of Novel Antisense Oligonucleosides Containing Dephosphono-Internucleosidic Linkages. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 1087-1090.	0.4	6
135	Synthesis of 5'-O-Amino-2'-Deoxypyrimidine and Purine Nucleosides: Building-Blocks for Antisense Oligonucleotides. Journal of Organic Chemistry, 1995, 60, 5150-5156.	1.7	29
136	Sequence-specific interaction of \hat{I}_{\pm} \hat{I}^2 -anomeric doublestranded DNA with the p50 subunit of NFxB: application to the decoy approach. Nucleic Acids Research, 1994, 22, 3069-3074.	6.5	35
137	Rapid determination of the affinity of 28- and 14-mer phosphorothioate oligonucleotides for HIV-1 reverse transcriptase by fluorescence spectroscopy. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1216, 1-8.	2.4	4
138	Triple helix formation by .alphaoligodeoxynucleotides: A vibrational spectroscopy and molecular modeling study. Biochemistry, 1993, 32, 10591-10598.	1.2	30
139	Comparative evaluation of seven oligonucleotide analogs as potential antisense agents. Journal of Medicinal Chemistry, 1993, 36, 280-287.	2.9	116
140	Isotactic Glycero Oligothymidylate. a Convenient Preparation of (R) and (S) 1′, 2′-Seco 2′-Nor Thymidine. Nucleosides & Nucleotides, 1992, 11, 1241-1255.	0.5	19
141	Template. Phosphorothioate oligonucleotides duplexes as inhibitors of HIV-1 reverse transcriptase. Biochemical and Biophysical Research Communications, 1992, 186, 1249-1256.	1.0	30
142	Sugar modified oligonucleotides: Synthesis, nuclease resistance and base pairing of oligodeoxynucleotides containing 1-(4′-thio-β-d-ribofuranosyl)-thymine. Biochemical and Biophysical Research Communications, 1992, 184, 797-803.	1.0	20
143	Structure and conformation in solution of the parallel-stranded hybrid α-d(CGCAATTCGC)·β-d(GCGTTAAGCG) by high-resolution 2D NMR. Journal of Biomolecular NMR, 1992, 2, 275-288.	1.6	12
144	Modified oligonucleotides: IV solid phase synthesis and preliminary evaluation of phosphorothioate RNA as potential antisense agents Tetrahedron Letters, 1990, 31, 7149-7152.	0.7	22

#	Article	IF	CITATIONS
145	Polarity of annealing and structural analysis of the RNase H resistant .alpha5'-d[TACACA]:.beta5'-r[AUGUGU] hybrid determined by high-field proton, carbon-13, and phosphorus-31 NMR analysis. Biochemistry, 1990, 29, 10329-10341.	1.2	17
146	Sugar modified oligonucleotides. III (1). Synthesis, nuclease resistance and base pairing properties of α- and β-L-octathymidylates. Biochemical and Biophysical Research Communications, 1990, 172, 537-543.	1.0	40
147	α-DNA VIII: thermodynamic parameters of complexes formed between the oligo-alpha-deoxynucleotides: α-d(GGAAGG) and α-d(CCTTCC) and their complementary oligo-beta-deoxynucleotides: β-d(CCTTCC) and β-d(GGAAGG) are different. Nucleic Acids Research, 1989, 17, 2693-2704.	6.5	52
148	Alpba-Oligodeoxynucleotides as Inhibitors of HIV Reverse Transcriptase. Nucleosides, Nucleotides and Nucleic Acids, 1989, 8, 995-1000.	0.4	9
149	Sugar-Modified Oligonucleotides: Synthesis, Physicochemical and Biological Properties. Nucleosides, Nucleotides and Nucleic Acids, 1989, 8, 627-648.	0.4	16
150	Alpha are more stable than beta anomer oligonucleotides in 3T3 cellular extracts. Biochimie, 1988, 70, 1729-1732.	1.3	18
151	α-Oligodeoxynucleotide stability in serum, subcellular extracts and culture media. Journal of Proteomics, 1988, 16, 311-318.	2.4	118
152	α-Anomeric DNA: β-RNA hybrids as new synthetic inhibitors of Escherichia coli RNase H, Drosophila embryo RNase H and M-MLV reverse transcriptase. Gene, 1988, 72, 349-360.	1.0	29
153	α-DNA VII. Solid phase synthesis of α-anomeric oligodeoxyribonucleotides. Nucleic Acids Research, 1988, 16, 833-847.	6.5	45
154	α-DNA-III. Characterization by high field1H-NMR, anti-parallel self-recognition and. Nucleic Acids Research, 1987, 15, 4241-4255.	6.5	41
155	α-DNA IV: α-anomeric and β-anomeric tetrathymidylates covalently linked to intercalating oxazolopyridocarbazole. Synthesis, physicochemical properties and poly (rA) binding. Nucleic Acids Research, 1987, 15, 6625-6641.	6.5	28
156	α-DNA VI: comparative study of α- and β-anomeric oligodeoxyribonucleotides in hybridization to mRNA and in cell free translation inhibition. Nucleic Acids Research, 1987, 15, 10419-10436.	6.5	125
157	α-DNA-V. Parallel annealing, handedness and conformation of the duplex of the unnatural α-hexadeoxyribonucleotide α-[d(CpApTpGpCpG)] with its β-complement β-[d(GpTpApCpGpC)] deduced from high field1H-NMR. Nucleic Acids Research, 1987, 15, 7027-7044.	6.5	84
158	Îʿ-DNA II. Synthesis of unnatural Îʿ-anomeric oligodeoxyribonucleotides containing the four usual bases and study of their substrate activities for nucleases. Nucleic Acids Research, 1987, 15, 3421-3437.	6.5	137
159	α-DNA. Synthesis, Characterization and Base-Pairing Properties of Unnatural α-Oligodeoxyribonucleotides. Nucleosides & Nucleotides, 1987, 6, 471-472.	0.5	7
160	α-DNA I. Synthesis, characterization by high field1H-NMR, and base-pairing properties of the unnatural hexadeoxyribonudeotide α-[d(CpCpTpTpCpC)] with its complement β-[d(CpCpApApGpG)]. Nucleic Acids Research, 1986, 14, 5019-5035.	6.5	102
161	Oligonucleotide Conjugation by Tyrosineâ€Click Reaction. European Journal of Organic Chemistry, 0, , .	1.2	0