Zihua Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/368838/publications.pdf

Version: 2024-02-01

		61945	7	76872
186	6,858	43		74
papers	citations	h-index		g-index
189	189	189		9434
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	The Effects of AlF[sub 3] Coating on the Performance of Li[Li[sub 0.2]Mn[sub 0.54]Ni[sub 0.13]Co[sub 0.13]]O[sub 2] Positive Electrode Material for Lithium-Ion Battery. Journal of the Electrochemical Society, 2008, 155, A775.	1.3	284
2	Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery. Nature Nanotechnology, 2020, 15, 224-230.	15.6	280
3	Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution. Nano Letters, 2014, 14, 2628-2635. Instability, intermixing and electronic structure at the epitaxial smml math	4.5	273
4	Instability, intermixing and electronic structure at the epitaxial <mml:math altimg="si51.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mstyle mathvariant="normal"><mml:mi>LaAlO</mml:mi></mml:mstyle></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:math>	mn> <td>:mrow></td>	:mrow>

#	Article	lF	Citations
19	Thermodynamic instability at the stoichiometric LaAlO ₃ <i>/</i> SrTiO ₃ (001) interface. Journal of Physics Condensed Matter, 2010, 22, 312201.	0.7	77
20	Direct Probes of 4 nm Diameter Gold Nanoparticles Interacting with Supported Lipid Bilayers. Journal of Physical Chemistry C, 2015, 119, 534-546.	1.5	77
21	Suppressed oxygen extraction and degradation of LiNi x Mn y Co z O2 cathodes at high charge cut-off voltages. Nano Research, 2017, 10, 4221-4231.	5.8	77
22	<i>In Situ</i> Molecular Imaging of the Biofilm and Its Matrix. Analytical Chemistry, 2016, 88, 11244-11252.	3.2	76
23	Controlled synthesis of highly-branched plasmonic gold nanoparticles through peptoid engineering. Nature Communications, 2018, 9, 2327.	5.8	74
24	In Situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries. Nano Letters, 2015, 15, 6170-6176.	4.5	73
25	Link between light-triggered Mg-banding and chamber formation in the planktic foraminifera Neogloboquadrina dutertrei. Nature Communications, 2017, 8, 15441.	5.8	73
26	miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF- \hat{l}^2 signalling pathway. British Journal of Cancer, 2015, 112, 1367-1375.	2.9	70
27	Electrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteries. Nature Materials, 2022, 21, 795-803.	13.3	69
28	Making a hybrid microfluidic platform compatible for <i>in situ</i> imaging by vacuum-based techniques. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	0.9	67
29	Carbon Mineralizability Determines Interactive Effects on Mineralization of Pyrogenic Organic Matter and Soil Organic Carbon. Environmental Science & Eamp; Technology, 2014, 48, 13727-13734.	4. 6	67
30	Response of nanocrystalline <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>3</mml:mn><mml:mi>C</mml:mi></mml:mrow></mml:math> silicon carbide to heavy-ion irradiation. Physical Review B, 2009, 80, .	1.1	66
31	Controlling Surface Phase Transition and Chemical Reactivity of O3-Layered Metal Oxide Cathodes for High-Performance Na-Ion Batteries. ACS Energy Letters, 2020, 5, 1718-1725.	8.8	64
32	In situ chemical probing of the electrode–electrolyte interface by ToF-SIMS. Lab on A Chip, 2014, 14, 855-859.	3.1	61
33	Controlling Gold Atom Penetration through Alkanethiolate Self-Assembled Monolayers on Au{111} by Adjusting Terminal Group Intermolecular Interactions. Journal of the American Chemical Society, 2006, 128, 13710-13719.	6.6	60
34	Design and Performance of an Instrument for Soft Landing of Biomolecular Ions on Surfaces. Analytical Chemistry, 2007, 79, 6566-6574.	3.2	60
35	Electrodeposition from Acidic Solutions of Nickel Bis(benzenedithiolate) Produces a Hydrogen-Evolving Ni–S Film on Glassy Carbon. ACS Catalysis, 2014, 4, 90-98.	5.5	59
36	Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study. Journal of Physical Chemistry B, 2015, 119, 10784-10797.	1.2	56

#	Article	IF	CITATIONS
37	Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution. Nanoscale, 2018, 10, 4291-4300.	2.8	56
38	Environment of Metal–O–Fe Bonds Enabling High Activity in CO ₂ Reduction on Single Metal Atoms and on Supported Nanoparticles. Journal of the American Chemical Society, 2021, 143, 5540-5549.	6.6	54
39	Operando formation of an ultra-low friction boundary film from synthetic magnesium silicon hydroxide additive. Tribology International, 2017, 110, 35-40.	3.0	53
40	Multiâ€instrument characterization of the surfaces and materials in microfabricated, carbon nanotubeâ€templated thin layer chromatography plates. An analogy to â€The Blind Men and the Elephant'. Surface and Interface Analysis, 2013, 45, 1273-1282.	0.8	52
41	Dynamic Lattice Oxygen Participation on Perovskite LaNiO ₃ during Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 15386-15390.	1.5	49
42	Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy. Integrative Biology (United Kingdom), 2016, 8, 635-644.	0.6	48
43	In Situ Mass Spectrometric Monitoring of the Dynamic Electrochemical Process at the Electrode–Electrolyte Interface: a SIMS Approach. Analytical Chemistry, 2017, 89, 960-965.	3.2	47
44	Improving the Molecular Ion Signal Intensity for In Situ Liquid SIMS Analysis. Journal of the American Society for Mass Spectrometry, 2016, 27, 2006-2013.	1.2	46
45	In situ molecular imaging of a hydrated biofilm in a microfluidic reactor by ToF-SIMS. Analyst, The, 2014, 139, 1609-1613.	1.7	45
46	Potential-Dynamic Surface Chemistry Controls the Electrocatalytic Processes of Ethanol Oxidation on Gold Surfaces. ACS Energy Letters, 2019, 4, 215-221.	8.8	45
47	Capturing the transient species at the electrode–electrolyte interface by in situ dynamic molecular imaging. Chemical Communications, 2016, 52, 10952-10955.	2.2	43
48	Meso-scale anisotropic hydrogen segregation near grain-boundaries in polycrystalline nickel characterized by EBSD/SIMS. Materials Letters, 2016, 165, 217-222.	1.3	42
49	Cr(III) Adsorption by Cluster Formation on Boehmite Nanoplates in Highly Alkaline Solution. Environmental Science & Environmen	4.6	42
50	Damage and microstructure evolution in GaN under Au ion irradiation. Journal Physics D: Applied Physics, 2010, 43, 085303.	1.3	41
51	Anticorrelation between Surface and Subsurface Point Defects and the Impact on the Redox Chemistry of TiO ₂ (110). ChemPhysChem, 2015, 16, 313-321.	1.0	41
52	The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20687-20695.	4.0	41
53	Investigation of Ion–Solvent Interactions in Nonaqueous Electrolytes Using in Situ Liquid SIMS. Analytical Chemistry, 2018, 90, 3341-3348.	3.2	41
54	Bio-reduction of ferrihydrite-montmorillonite-organic matter complexes: Effect of montmorillonite and fate of organic matter. Geochimica Et Cosmochimica Acta, 2020, 276, 327-344.	1.6	39

#	Article	IF	Citations
55	Anion Exchange of Ruddlesden–Popper Lead Halide Perovskites Produces Stable Lateral Heterostructures. Journal of the American Chemical Society, 2021, 143, 5212-5221.	6.6	37
56	Electronic stopping powers for heavy ions in SiC and SiO2. Journal of Applied Physics, 2014, 115, 044903.	1.1	36
57	Two-dimensional and three-dimensional dynamic imaging of live biofilms in a microchannel by time-of-flight secondary ion mass spectrometry. Biomicrofluidics, 2015, 9, 031101.	1.2	36
58	Cellular Delivery of Nanoparticles Revealed with Combined Optical and Isotopic Nanoscopy. ACS Nano, 2016, 10, 4046-4054.	7.3	36
59	Glass binder development for a glass-bonded sodalite ceramic waste form. Journal of Nuclear Materials, 2017, 489, 42-63.	1.3	34
60	An investigation of hydrogen depth profiling using ToFâ€SIMS. Surface and Interface Analysis, 2012, 44, 232-237.	0.8	33
61	Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging. Journal of Analytical Atomic Spectrometry, 2017, 32, 1092-1100.	1.6	33
62	Performance of a microfluidic device for in situ ToF-SIMS analysis of selected organic molecules at aqueous surfaces. Analytical Methods, 2013, 5, 2515.	1.3	30
63	Ion-Exchange Interdiffusion Model with Potential Application to Long-Term Nuclear Waste Glass Performance. Journal of Physical Chemistry C, 2016, 120, 9374-9384.	1.5	30
64	Retrospective study of predictors of bone metastasis in colorectal cancer patients. Journal of Bone Oncology, 2017, 9, 25-28.	1.0	30
65	Scanning Probe Directâ€Write of Germanium Nanostructures. Advanced Materials, 2010, 22, 4639-4642.	11.1	29
66	Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process. Journal of Power Sources, 2012, 214, 142-152.	4.0	29
67	Irradiation effects and hydrogen behavior in H2+ and He+ implanted γ-LiAlO2 single crystals. Journal of Nuclear Materials, 2017, 484, 374-381.	1.3	29
68	Deciphering the aqueous chemistry of glyoxal oxidation with hydrogen peroxide using molecular imaging. Physical Chemistry Chemical Physics, 2017, 19, 20357-20366.	1.3	29
69	Creation and Ordering of Oxygen Vacancies at WO _{3â^î^(} and Perovskite Interfaces. ACS Applied Materials & Distribution (1998) Applied Materials & Distributi	4.0	29
70	Does interfacial photochemistry play a role in the photolysis of pyruvic acid in water?. Atmospheric Environment, 2018, 191, 36-45.	1.9	28
71	Evolution of aqSOA from the Air–Liquid Interfacial Photochemistry of Glyoxal and Hydroxyl Radicals. Environmental Science & Technology, 2019, 53, 10236-10245.	4.6	28
72	Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2010, 157, B1019.	1.3	27

#	Article	IF	CITATIONS
73	Submicron sodium banding in cultured planktic foraminifera shells. Geochimica Et Cosmochimica Acta, 2019, 253, 127-141.	1.6	27
74	In Situ Liquid Secondary Ion Mass Spectrometry: A Surprisingly Soft Ionization Process for Investigation of Halide Ion Hydration. Analytical Chemistry, 2019, 91, 7039-7046.	3.2	27
75	Internal structure, hygroscopic and reactive properties of mixed sodium methanesulfonate-sodium chloride particles. Physical Chemistry Chemical Physics, 2011, 13, 11846.	1.3	25
76	Characterization of Ion Profiles in Light-Emitting Electrochemical Cells by Secondary Ion Mass Spectrometry. ACS Applied Materials & Spectrometry. ACS Applied Materials & Spectrometry. 4, 1149-1153.	4.0	25
77	Characterizing Ion Profiles in Dynamic Junction Light-Emitting Electrochemical Cells. ACS Applied Materials & Dynamic Junction Light-Emitting Electrochemical Cells. ACS Applied Materials & Dynamic Junction Light-Emitting Electrochemical Cells. ACS Applied Materials & Dynamic Junction Light-Emitting Electrochemical Cells. ACS Applied Materials & Dynamic Junction Light-Emitting Electrochemical Cells. ACS Applied Materials & Dynamic Junction Light-Emitting Electrochemical Cells. ACS Applied Materials & Dynamic Junction Light-Emitting Electrochemical Cells. ACS Applied Materials & Dynamic Junction Light-Emitting Electrochemical Cells. ACS Applied Materials & Dynamic Junction Light-Emitting Electrochemical Cells. ACS Applied Materials & Dynamic Junction Light-Emitting Electrochemical Cells. ACS Applied Materials & Dynamic Junction Light-Emitting Electrochemical Cells. ACS Applied Materials & Dynamic Junction Light-Emitting Electrochemical Cells. ACS Applied Materials & Dynamic Junction Light-Emitting Electrochemical Cells. ACS Applied Materials & Dynamic Junction Light-Emitting Electrochemical Cells & Dynamic Junction Light-Emitting Electrochemical Cells & Dynamic Junction Light-Emitting Electrochemical Cells & Dynamic Light-Emittin	4.0	25
78	Dilute condition corrosion behavior of glass-ceramic waste form. Journal of Nuclear Materials, 2016, 482, 1-11.	1.3	25
79	Evolution of the Interface and Metal Film Morphology in the Vapor Deposition of Ti on Hexadecanethiolate Hydrocarbon Monolayers on Au. Journal of Physical Chemistry B, 2005, 109, 21006-21014.	1.2	24
80	<i>In situ</i> SEM and ToFâ€SIMS analysis of IgG conjugated gold nanoparticles at aqueous surfaces. Surface and Interface Analysis, 2014, 46, 224-228.	0.8	24
81	Argon Cluster Sputtering Source for ToF-SIMS Depth Profiling of Insulating Materials: High Sputter Rate and Accurate Interfacial Information. Journal of the American Society for Mass Spectrometry, 2015, 26, 1283-1290.	1.2	24
82	Electronic properties of H and D doped ZnO epitaxial films. Applied Physics Letters, 2008, 92, 152105.	1.5	23
83	Characterization of syntrophic <i>Geobacter</i> communities using ToF-SIMS. Biointerphases, 2017, 12, 05G601.	0.6	23
84	Nanostructural evolution and behavior of H and Li in ion-implanted \hat{I}^3 -LiAlO2. Journal of Nuclear Materials, 2017, 494, 411-421.	1.3	23
85	Two coexisting liquid phases in switchable ionic liquids. Physical Chemistry Chemical Physics, 2017, 19, 22627-22632.	1.3	23
86	Molecular evidence of a toxic effect on a biofilm and its matrix. Analyst, The, 2019, 144, 2498-2503.	1.7	23
87	Mechanisms of Enhanced Antibacterial Activity by Reduced Chitosan-Intercalated Nontronite. Environmental Science & Environment	4.6	23
88	Chemistry of metal atoms reacting with alkanethiol self-assembled monolayers. Applied Surface Science, 2006, 252, 6686-6688.	3.1	22
89	lon distribution and electronic stopping power for Au ions in silicon carbide. Nuclear Instruments & Methods in Physics Research B, 2013, 307, 65-70.	0.6	22
90	Charge Transfer and Built-in Electric Fields between a Crystalline Oxide and Silicon. Physical Review Letters, 2019, 123, 026805.	2.9	22

#	Article	IF	CITATIONS
91	A study of H and D doped ZnO epitaxial films grown by pulsed laser deposition. Journal of Applied Physics, 2008, 104, 053711.	1.1	20
92	Why ozonolysis may not increase the hydrophilicity of particles. Atmospheric Environment, 2010, 44, 939-944.	1.9	20
93	Serial and Parallel Si, Ge, and SiGe Direct-Write with Scanning Probes and Conducting Stamps. Nano Letters, 2011, 11, 2386-2389.	4.5	20
94	Quantifying element incorporation in multispecies biofilms using nanoscale secondary ion mass spectrometry image analysis. Biointerphases, 2016, 11, 02A322.	0.6	20
95	Molecular Depth Profiling of Sucrose Films: A Comparative Study of C60n+ Ions and Traditional Cs+ and O2+ Ions. Analytical Chemistry, 2009, 81, 8272-8279.	3.2	19
96	Determination of carbon distributions in quenched and partitioned microstructures using nanoscale secondary ion mass spectroscopy. Scripta Materialia, 2015, 104, 79-82.	2.6	19
97	<scp>ToFâ€SIMS</scp> characterization of glyoxal surface oxidation products by hydrogen peroxide: A comparison between dry and liquid samples. Surface and Interface Analysis, 2018, 50, 927-938.	0.8	19
98	Mesoscopic Structure Facilitates Rapid CO ₂ Transport and Reactivity in CO ₂ Capture Solvents. Journal of Physical Chemistry Letters, 2018, 9, 5765-5771.	2.1	19
99	Chemical imaging and diffusion of hydrogen and lithium in lithium aluminate. Journal of Nuclear Materials, 2018, 511, 1-10.	1.3	19
100	Interconversion of intrinsic defects in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>SrTi</mml:mi><mml:msub><mml mathvariant="normal">O<mml:mn>3</mml:mn></mml></mml:msub><mml:mrow><mml:mo>(</mml:mo>< Physical Review B, 2018, 97, .</mml:mrow></mml:mrow></mml:math>	l:mi mml:mn>0)01 ¹⁹ mml:mn
101	Role of clay-associated humic substances in catalyzing bioreduction of structural Fe(III) in nontronite by Shewanella putrefaciens CN32. Science of the Total Environment, 2020, 741, 140213.	3.9	19
102	Optical properties of Pr3+-doped SrWO4 crystal. Applied Physics B: Lasers and Optics, 2008, 90, 497-502.	1.1	18
103	A model for phosphosilicate glass deposition via POCl3 for control of phosphorus dose in Si. Journal of Applied Physics, 2012, 112, 124912.	1.1	18
104	Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses. Journal of Non-Crystalline Solids, 2014, 405, 83-90.	1.5	18
105	Carbon Contamination During Ion Irradiation - Accurate Detection and Characterization of its Effect on Microstructure of Ferritic/Martensitic Steels. Scientific Reports, 2017, 7, 15813.	1.6	18
106	Dark air–liquid interfacial chemistry of glyoxal and hydrogen peroxide. Npj Climate and Atmospheric Science, 2019, 2, .	2.6	18
107	Comparison between simulated and experimental Au-ion profiles implanted in nanocrystalline ceria. Nuclear Instruments & Methods in Physics Research B, 2013, 307, 93-97.	0.6	16
108	Physical and Chemical Morphology of Passively Sampled Environmental Films. ACS Earth and Space Chemistry, 2019, 3, 305-313.	1.2	16

#	Article	IF	Citations
109	Direct Molecular Evidence of Proton Transfer and Mass Dynamics at the Electrode–Electrolyte Interface. Journal of Physical Chemistry Letters, 2019, 10, 251-258.	2.1	16
110	Correlative surface imaging reveals chemical signatures for bacterial hotspots on plant roots. Analyst, The, 2020, 145, 393-401.	1.7	15
111	Effect of Cr2O3 on the 18O tracer incorporation in SOFC materials. Solid State Ionics, 2010, 181, 640-645.	1.3	14
112	Silicon (100)/SiO2 by ToF-SIMS. Surface Science Spectra, 2015, 22, 1-6.	0.3	14
113	Nanoscale imaging of Li and B in nuclear waste glass, a comparison of ToF-SIMS, NanoSIMS, and APT. Surface and Interface Analysis, 2016, 48, 1392-1401.	0.8	14
114	Thermal and optical properties of Tm3+:NaLa(WO4)2 crystal. Applied Physics B: Lasers and Optics, 2007, 86, 529-535.	1.1	13
115	Damage profiles and ion distribution in Pt-irradiated SiC. Nuclear Instruments & Methods in Physics Research B, 2012, 286, 114-118.	0.6	13
116	Are cluster ion analysis beams good choices for hydrogen depth profiling using timeâ€ofâ€flight secondary ion mass spectrometry?. Surface and Interface Analysis, 2012, 44, 89-93.	0.8	13
117	Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Journal of Nuclear Materials, 2015, 458, 146-155.	1.3	13
118	In Situ Characterization of Hydrated Proteins in Water by SALVI and ToF-SIMS. Journal of Visualized Experiments, 2016, , 53708.	0.2	13
119	An investigation of the beam damage effect on <i>in situ</i> liquid secondary ion mass spectrometry analysis. Rapid Communications in Mass Spectrometry, 2017, 31, 2035-2042.	0.7	13
120	Investigation of physical and chemical properties for upgraded SAP (SiO2Al2O3P2O5) waste form to immobilize radioactive waste salt. Journal of Nuclear Materials, 2019, 515, 382-391.	1.3	13
121	Accelerated design of vanadium redox flow battery electrolytes through tunable solvation chemistry. Cell Reports Physical Science, 2021, 2, 100323.	2.8	12
122	Real-Time Characterization of the Fine Structure and Dynamics of an Electrical Double Layer at Electrodeâ€"Electrolyte Interfaces. Journal of Physical Chemistry Letters, 2021, 12, 5279-5285.	2.1	12
123	Tuning band alignment at a semiconductor-crystalline oxide heterojunction via electrostatic modulation of the interfacial dipole. Physical Review Materials, 2021, 5, .	0.9	12
124	Conversion of infrared radiation into visible emission in NaGd(WO4)2:Yb3+, Ho3+ crystals. Applied Physics B: Lasers and Optics, 2007, 88, 57-60.	1.1	11
125	Ga-doped ZnO grown by pulsed laser deposition in H2: The roles of Ga and H. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, 03A102.	0.9	11
126	ToF-SIMS depth profiling of insulating samples, interlaced mode or non-interlaced mode?. Surface and Interface Analysis, 2014, 46, 257-260.	0.8	11

#	Article	IF	CITATIONS
127	ToF-SIMS characterization of silk fibroin and polypyrrole composite actuators. Synthetic Metals, 2015, 209, 490-495.	2.1	11
128	$ Lattice \ damage \ and \ compositional \ changes \ in \ Xe \ ion \ irradiated \ In < i>xGal-< i>xN \ (< i>x=) \ Tj \ ETQq0 \ 0 $	0 rgBT /Ον	verlock 10 Tf
129	Molecular dynamics simulations of ion range profiles for heavy ions in light targets. Nuclear Instruments & Methods in Physics Research B, 2012, 286, 45-50.	0.6	10
130	Al2O3 e-beam evaporated onto silicon (100)/SiO2 by ToF-SIMS. Surface Science Spectra, 2015, 22, 7-13.	0.3	10
131	Understanding Time Dependence on Zinc Metal–Organic Framework Growth Using in Situ Liquid Secondary Ion Mass Spectrometry. ACS Applied Materials & Interfaces, 2020, 12, 5090-5098.	4.0	10
132	In situ molecular imaging of adsorbed protein films in water indicating hydrophobicity and hydrophilicity. Scientific Reports, 2020, 10, 3695.	1.6	10
133	Bulk and Shortâ€Circuit Anion Diffusion in Epitaxial Fe ₂ O ₃ Films Quantified Using Buried Isotopic Tracer Layers. Advanced Materials Interfaces, 2021, 8, 2001768.	1.9	10
134	MeV Au ion irradiation in silicon and nanocrystalline zirconia film deposited on silicon substrate. Nuclear Instruments & Methods in Physics Research B, 2012, 286, 173-179.	0.6	9
135	Defects and Minor Phases in O+and Zr+lon Co-implanted SrTiO3. Industrial & Defects and Minor Phases in O+and Zr+lon Co-implanted SrTiO3. Industrial & Defects and Minor Phases in O+and Zr+lon Co-implanted SrTiO3. Industrial & Defects and Minor Phases in O+and Zr+lon Co-implanted SrTiO3. Industrial & Defects and Minor Phases in O+and Zr+lon Co-implanted SrTiO3. Industrial & Defects and Minor Phases in O+and Zr+lon Co-implanted SrTiO3. Industrial & Defects and Minor Phases in O+and Zr+lon Co-implanted SrTiO3. Industrial & Defects and Minor Phases in O+and Zr+lon Co-implanted SrTiO3. Industrial & Defects and Minor Phases in O+and Zr+lon Co-implanted SrTiO3. Industrial & Defects and Minor Phases in O+and Zr+lon Co-implanted SrTiO3. Industrial & Defects and Minor Phases in O+and Zr+lon Co-implanted SrTiO3. Industrial & Defects and Minor Phases in O+and Zr+lon Co-implanted SrTiO3. Industrial & Defects and Minor Phases in O+and Zr+lon Co-implanted SrTiO3. Industrial & Defects and Minor Phases in O+and Zr+lon Co-implanted SrTiO3.	1.8	9
136	Cisplatinâ€induced alteration on membrane composition of A549 cells revealed by ToFâ€SIMS. Surface and Interface Analysis, 2020, 52, 256-263.	0.8	9
137	Onshore soil microbes and endophytes respond differently to geochemical and mineralogical changes in the Aral Sea. Science of the Total Environment, 2021, 765, 142675.	3.9	9
138	Molecular imaging of plant–microbe interactions on the <i>Brachypodium</i> seed surface. Analyst, The, 2021, 146, 5855-5865.	1.7	9
139	Static SIMS study of the behavior of K atoms on \hat{i} —,CH3, \hat{i} —,CO2H and \hat{i} —,CO2CH3 terminated self-assembled monolayers. Applied Surface Science, 2004, 231-232, 318-322.	3.1	8
140	Real-space characterization of reactivity towards water at theBi2Te3(111) surface. Physical Review B, 2016, 93, .	1.1	8
141	Atmospheric particulate characterization by ToF-SIMS in an urban site in Beijing. Atmospheric Environment, 2020, 220, 117090.	1.9	8
142	A quantitative study of retention and release of deuterium and tritium during irradiation of \hat{l}^3 -LiAlO2 pellets. Journal of Nuclear Materials, 2020, 542, 152532.	1.3	8
143	Liquid ToF-SIMS revealing the oil, water, and surfactant interface evolution. Physical Chemistry Chemical Physics, 2020, 22, 11771-11782.	1.3	8
144	Molecular Determination of Organic Adsorption Sites on Smectite during Fe Redox Processes Using ToF-SIMS Analysis. Environmental Science & Environment	4.6	8

#	Article	IF	CITATIONS
145	Unique motif shared by HLAâ€B*59:01 and HLAâ€B*55:02 is associated with methazolamideâ€induced Stevens–Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 873-880.	1.3	8
146	Surface science analysis of GaAs photocathodes following sustained electron beam delivery. Physical Review Special Topics: Accelerators and Beams, 2012, 15, .	1.8	7
147	Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F ⁺ lons. Journal of Physical Chemistry C, 2014, 118, 18160-18169.	1.5	7
148	Synergistic effects of iodine and silver ions co-implanted in 6H–SiC. Journal of Nuclear Materials, 2015, 467, 582-587.	1.3	7
149	Defect- and strain-enhanced cavity formation and Au precipitation at nano-crystalline ZrO2/SiO2/Si interfaces. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 126-132.	0.6	6
150	NanoSIMS imaging alteration layers of a leached SON68 glass via a FIB-made wedged crater. Surface and Interface Analysis, 2014, 46, 233-237.	0.8	6
151	Multimodal and <i>In-Situ</i> Chemical Imaging of Critical Surfaces and Interfaces in Li Batteries. Microscopy Today, 2016, 24, 32-39.	0.2	6
152	In Vivo Molecular Insights into Syntrophic <i>Geobacter</i> Aggregates. Analytical Chemistry, 2020, 92, 10402-10411.	3.2	6
153	Molecular Examination of Ion-Pair Competition in Alkaline Aluminate Solutions Using In Situ Liquid SIMS. Analytical Chemistry, 2021, 93, 1068-1075.	3.2	6
154	Microstructural evolution and precipitation in \hat{I}^3 -LiAlO2 during ion irradiation. Journal of Applied Physics, 2022, 131, .	1.1	6
155	Functionalization/passivation of porous graphitic carbon with di-tert-amylperoxide. Journal of Chromatography A, 2011, 1218, 8362-8369.	1.8	5
156	Thermally evaporated (oxide) iron on an alumina barrier layer by ToF-SIMS. Surface Science Spectra, 2015, 22, 14-21.	0.3	5
157	Multiwalled carbon nanotube forest grown via chemical vapor deposition from iron catalyst nanoparticles by ToF-SIMS. Surface Science Spectra, 2015, 22, 29-33.	0.3	5
158	Switchable 1,8-diazabicycloundec-7-ene and 1-hexanol ionic liquid analyzed by liquid ToF-SIMS. Surface Science Spectra, 2016, 23, 9-28.	0.3	5
159	Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS. Nuclear Instruments & Methods in Physics Research B, 2017, 404, 45-51.	0.6	5
160	Thermal annealing behavior of hydrogen and surface topography of H2+ ion implanted tungsten. Journal of Nuclear Science and Technology, 2018, 55, 703-708.	0.7	5
161	Deuterium diffusion in \hat{I}^3 -LiAlO2 pellets irradiated with He+ and D2+ ions. Journal of Nuclear Materials, 2020, 538, 152357.	1.3	5
162	Using C ₆₀ ⁺ sputtering to improve detection limit of nitrogen in zinc oxide. Surface and Interface Analysis, 2011, 43, 661-663.	0.8	4

#	Article	IF	Citations
163	Thermally annealed iron thin film on an alumina barrier layer by ToF-SIMS. Surface Science Spectra, 2015, 22, 22-28.	0.3	4
164	In Situ Characterization of Shewanella oneidensis MR1 Biofilms by SALVI and ToF-SIMS. Journal of Visualized Experiments, 2017, , .	0.2	4
165	Multimodal and in-situ Chemical Imaging of Critical Surfaces and Interfaces in Advanced Batteries. Journal of Surface Analysis (Online), 2017, 24, 141-150.	0.1	4
166	Formation of bubbles and blisters in hydrogen ion implanted polycrystalline tungsten. Radiation Effects and Defects in Solids, 2018, 173, 1027-1036.	0.4	4
167	Passively Sampled Environmental Films Show Geographic Variability and Host a Variety of Microorganisms. ACS Earth and Space Chemistry, 2019, 3, 2726-2735.	1.2	4
168	In situ liquid SIMS analysis of uranium oxide. Surface and Interface Analysis, 2020, 52, 454-459.	0.8	4
169	Evidence of lithium mobility under neutron irradiation. Journal of Materials Research and Technology, 2021, 14, 475-483.	2.6	4
170	On the dissolution of a borosilicate glass with the use of isotopic tracing $\hat{a} \in \text{``Insights}$ into the mechanism for the long-term dissolution rate. Geochimica Et Cosmochimica Acta, 2022, 318, 213-229.	1.6	4
171	Spontaneous Lithiation of Binary Oxides during Epitaxial Growth on LiCoO ₂ . Nano Letters, 2022, 22, 5530-5537.	4.5	4
172	Ag out-surface diffusion in crystalline SiC with an effective SiO2 diffusion barrier. Journal of Nuclear Materials, 2015, 464, 294-298.	1.3	3
173	Grain growth of nanocrystalline 3C-SiC under Au ion irradiation at elevated temperatures. Journal Physics D: Applied Physics, 2016, 49, 035304.	1.3	3
174	Nanoscale imaging of hydrogen and sodium in alteration layers of corroded glass using ToFâ€SIMS: Is an auxiliary sputtering ion beam necessary?. Surface and Interface Analysis, 2019, 51, 219-225.	0.8	3
175	ToFâ€SIMS analysis of chemical composition of atmospheric aerosols in Beijing. Surface and Interface Analysis, 2020, 52, 272-282.	0.8	3
176	Three-Dimensional Mass Spectrometric Imaging of Biological Structures Using a Vacuum-Compatible Microfluidic Device. Analytical Chemistry, 2020, 92, 13785-13793.	3.2	3
177	Revealing the Structural Evolution of Green Rust Synthesized in Ionic Liquids by In Situ Molecular Imaging. Advanced Materials Interfaces, 2020, 7, 2000452.	1.9	3
178	Mass spectral imaging showing the plant growth-promoting rhizobacteria's effect on the Brachypodium awn. Biointerphases, 2022, 17, .	0.6	3
179	Quantitative Determination of Deuterium Atom Concentration in Zinc Oxide Thin Films by Time-of-Flight Secondary Ion Mass Spectrometry. , 2009, , .		2
180	Radiation Induced Cavity Formation and Gold Precipitation at the Interfaces of a ZrO2/SiO2/Si Heterostructure. Materials Research Society Symposia Proceedings, 2011, 1298, 111.	0.1	2

#	Article	IF	CITATIONS
181	Experimental Insights into the Growth of Single Truncated Anatase Bipyramids. Chemistry - A European Journal, 2019, 25, 993-996.	1.7	2
182	Predicting lung adenocarcinoma invasiveness by measurement of pure ground-glass nodule roundness by using multiplanar reformation: a retrospective analysis. Clinical Radiology, 2022, 77, e20-e26.	0.5	2
183	Mapping hidden space-charge distributions across crystalline metal oxide/group IV semiconductor interfaces. Physical Review Materials, 2022, 6, .	0.9	2
184	Angular distribution and recoil effect for 1MeV Au+ ions through a Si3N4 thin foil. Nuclear Instruments & Methods in Physics Research B, 2014, 332, 346-350.	0.6	0
185	In Situ Imaging and Spectroscopy of Particles in Liquid. Microscopy and Microanalysis, 2017, 23, 882-883.	0.2	O
186	Imaging Corrosion at the Metal-Paint Interface Using Time-of-Flight Secondary Ion Mass Spectrometry. Journal of Visualized Experiments, 2019, , .	0.2	0