Aaron C Petrey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3686900/publications.pdf

Version: 2024-02-01

23 papers

2,716 citations

567281 15 h-index 22 g-index

26 all docs

26 docs citations

26 times ranked 5686 citing authors

#	Article	IF	CITATIONS
1	The role of hyaluronan synthesis and degradation in the critical respiratory illness COVID-19. American Journal of Physiology - Cell Physiology, 2022, 322, C1037-C1046.	4.6	7
2	Hyaluronan and Its Receptors as Regulatory Molecules of the Endothelial Interface. Journal of Histochemistry and Cytochemistry, 2021, 69, 25-34.	2.5	24
3	Cytokine release syndrome in COVID-19: Innate immune, vascular, and platelet pathogenic factors differ in severity of disease and sex. Journal of Leukocyte Biology, 2021, 109, 55-66.	3.3	82
4	Heparanase expression and activity are increased in platelets during clinical sepsis. Journal of Thrombosis and Haemostasis, 2021, 19, 1319-1330.	3.8	15
5	COVID-19 generates hyaluronan fragments that directly induce endothelial barrier dysfunction. JCI Insight, 2021, 6, .	5.0	57
6	Increased Platelet S100A8/S100A9 Associated with Vasculitis in Granulomatosis with Polyangiitis (GPA). Blood, 2021, 138, 3142-3142.	1.4	1
7	The mTOR Pathway in Platelets Contributes to the Pathophysiology of Experimental Cerebral Malaria. Blood, 2021, 138, 580-580.	1.4	0
8	Platelet Dysregulation in the Pathobiology of COVID-19. Hamostaseologie, 2021, , .	1.9	2
9	Editorial: Proteoglycans and Glycosaminoglycan Modification in Immune Regulation and Inflammation. Frontiers in Immunology, 2020, 11, 595867.	4.8	2
10	COVIDâ€19 patients exhibit reduced procoagulant platelet responses. Journal of Thrombosis and Haemostasis, 2020, 18, 3067-3073.	3.8	55
11	Platelet gene expression and function in patients with COVID-19. Blood, 2020, 136, 1317-1329.	1.4	741
12	Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood, 2020, 136, 1169-1179.	1.4	1,071
13	Platelet hyaluronidase-2 regulates the early stages of inflammatory disease in colitis. Blood, 2019, 134, 765-775.	1.4	14
14	Hyaluronan in inflammatory bowel disease: Cross-linking inflammation and coagulation. Matrix Biology, 2019, 78-79, 314-323.	3.6	30
15	Multifunctional Role of 35 Kilodalton Hyaluronan in Promoting Defense of the Intestinal Epithelium. Journal of Histochemistry and Cytochemistry, 2018, 66, 273-287.	2.5	22
16	Layilin is critical for mediating hyaluronan 35 kDa-induced intestinal epithelial tight junction protein ZO-1 in vitro and in vivo. Matrix Biology, 2018, 66, 93-109.	3.6	41
17	The extracellular matrix in IBD. Current Opinion in Gastroenterology, 2017, 33, 234-238.	2.3	74
18	Cathepsin-Mediated Alterations in TGFß-Related Signaling Underlie Disrupted Cartilage and Bone Maturation Associated With Impaired Lysosomal Targeting. Journal of Bone and Mineral Research, 2016, 31, 535-548.	2.8	18

AARON C PETREY

#	Article	IF	CITATION
19	Thrombin Cleavage of Inter-α-inhibitor Heavy Chain 1 Regulates Leukocyte Binding to an Inflammatory Hyaluronan Matrix. Journal of Biological Chemistry, 2016, 291, 24324-24334.	3.4	33
20	Hyaluronan Depolymerization by Megakaryocyte Hyaluronidase-2 Is Required for Thrombopoiesis. American Journal of Pathology, 2016, 186, 2390-2403.	3.8	19
21	Enzyme-specific differences in mannose phosphorylation between GlcNAc-1-phosphotransferase $\hat{l}\pm\hat{l}^2$ and \hat{l}^3 subunit deficient zebrafish support cathepsin proteases as early mediators of mucolipidosis pathology. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1845-1853.	2.4	7
22	Hyaluronan, a Crucial Regulator of Inflammation. Frontiers in Immunology, 2014, 5, 101.	4.8	365
23	Excessive activity of cathepsin K is associated with cartilage defects in a zebrafish model of mucolipidosis II. DMM Disease Models and Mechanisms, 2012, 5, 177-190.	2.4	36