Seung Woo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3686489/publications.pdf Version: 2024-02-01

	50276	33894
10,111	46	99
citations	h-index	g-index
134	134	13677
docs citations	times ranked	citing authors
		U U
	10,111 citations 134 docs citations	10,11146citationsh-index134134docs citationstimes ranked

SELING WOOLEE

#	Article	IF	CITATIONS
1	High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotechnology, 2010, 5, 531-537.	31.5	1,026
2	Carbon Nanotube/Manganese Oxide Ultrathin Film Electrodes for Electrochemical Capacitors. ACS Nano, 2010, 4, 3889-3896.	14.6	686
3	Layer-by-Layer Assembly of All Carbon Nanotube Ultrathin Films for Electrochemical Applications. Journal of the American Chemical Society, 2009, 131, 671-679.	13.7	598
4	Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chemical Reviews, 2019, 119, 5416-5460.	47.7	572
5	Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy and Environmental Science, 2011, 4, 1972.	30.8	346
6	Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nature Communications, 2017, 8, 536.	12.8	313
7	Role of Oxygen Functional Groups in Carbon Nanotube/Graphene Freestanding Electrodes for High Performance Lithium Batteries. Advanced Functional Materials, 2013, 23, 1037-1045.	14.9	304
8	Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature, 2022, 601, 217-222.	27.8	290
9	The Nature of Lithium Battery Materials under Oxygen Evolution Reaction Conditions. Journal of the American Chemical Society, 2012, 134, 16959-16962.	13.7	287
10	Surface Composition Tuning of Au–Pt Bimetallic Nanoparticles for Enhanced Carbon Monoxide and Methanol Electro-oxidation. Journal of the American Chemical Society, 2013, 135, 7985-7991.	13.7	266
11	Layer-by-Layer Assembled Polyaniline Nanofiber/Multiwall Carbon Nanotube Thin Film Electrodes for High-Power and High-Energy Storage Applications. ACS Nano, 2011, 5, 8552-8561.	14.6	255
12	Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries. Energy and Environmental Science, 2017, 10, 205-215.	30.8	253
13	Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors. Carbon, 2011, 49, 457-467.	10.3	250
14	Piezoelectric-Driven Self-Charging Supercapacitor Power Cell. ACS Nano, 2015, 9, 4337-4345.	14.6	226
15	Emergent Pseudocapacitance of 2D Nanomaterials. Advanced Energy Materials, 2018, 8, 1702930.	19.5	226
16	First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries. Journal of the American Chemical Society, 2016, 138, 2374-2382.	13.7	194
17	Structure Sensitivity of Pd Facets for Enhanced Electrochemical Nitrate Reduction to Ammonia. ACS Catalysis, 2021, 11, 7568-7577.	11.2	194
18	Roles of Surface Steps on Pt Nanoparticles in Electro-oxidation of Carbon Monoxide and Methanol. Journal of the American Chemical Society, 2009, 131, 15669-15677.	13.7	186

#	Article	IF	CITATIONS
19	Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes. Nature Communications, 2015, 6, 7040.	12.8	159
20	Ammonia and Nitric Acid Demands for Fertilizer Use in 2050. ACS Energy Letters, 2021, 6, 3676-3685.	17.4	157
21	Oxygenâ€Vacancyâ€Introduced BaSnO _{3â^'} <i>_δ</i> Photoanodes with Tunable Band Structures for Efficient Solarâ€Driven Water Splitting. Advanced Materials, 2019, 31, e1903316.	21.0	140
22	High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers. Nature Communications, 2018, 9, 4479.	12.8	139
23	Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries. Energy and Environmental Science, 2012, 5, 5437-5444.	30.8	130
24	Role of Surface Steps of Pt Nanoparticles on the Electrochemical Activity for Oxygen Reduction. Journal of Physical Chemistry Letters, 2010, 1, 1316-1320.	4.6	121
25	Parallelized Reaction Pathway and Stronger Internal Band Bending by Partial Oxidation of Metal Sulfide–Graphene Composites: Important Factors of Synergistic Oxygen Evolution Reaction Enhancement. ACS Catalysis, 2018, 8, 4091-4102.	11.2	116
26	Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes. Water Research, 2019, 151, 252-259.	11.3	116
27	Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy, 2015, 12, 314-321.	16.0	108
28	Pt–Ni octahedral nanocrystals as a class of highly active electrocatalysts toward the hydrogen evolution reaction in an alkaline electrolyte. Journal of Materials Chemistry A, 2016, 4, 12392-12397.	10.3	103
29	Structural Evolution and Pulverization of Tin Nanoparticles during Lithiation-Delithiation Cycling. Journal of the Electrochemical Society, 2014, 161, F3019-F3024.	2.9	96
30	Rapid fabrication of thick spray-layer-by-layer carbon nanotube electrodes for high power and energy devices. Energy and Environmental Science, 2013, 6, 888.	30.8	79
31	Reducing the Barrier Energy of Selfâ€Reconstruction for Anchored Cobalt Nanoparticles as Highly Active Oxygen Evolution Electrocatalyst. Advanced Materials, 2019, 31, e1901977.	21.0	79
32	A 3D Hierarchical Host with Enhanced Sodiophilicity Enabling Anodeâ€Free Sodiumâ€Metal Batteries. Advanced Materials, 2022, 34, e2109767.	21.0	79
33	High-Density Lithium-Ion Energy Storage Utilizing the Surface Redox Reactions in Folded Graphene Films. Chemistry of Materials, 2015, 27, 3291-3298.	6.7	78
34	Innovative cathode flow-field design for passive air-cooled polymer electrolyte membrane (PEM) fuel cell stacks. International Journal of Hydrogen Energy, 2020, 45, 11704-11713.	7.1	72
35	High Capacity Adsorption—Dominated Potassium and Sodium Ion Storage in Activated Crumpled Graphene. Advanced Energy Materials, 2020, 10, 1903280.	19.5	72
36	Toward Efficient Electrocatalytic Oxygen Evolution: Emerging Opportunities with Metallic Pyrochlore Oxides for Electrocatalysts and Conductive Supports. ACS Central Science, 2020, 6, 880-891.	11.3	71

#	Article	IF	CITATIONS
37	Electrostatic Layer-by-Layer Assembled Au Nanoparticle/MWNT Thin Films: Microstructure, Optical Property, and Electrocatalytic Activity for Methanol Oxidation. Chemistry of Materials, 2009, 21, 2993-3001.	6.7	63
38	Ice-templated Self-assembly of VOPO4–Graphene Nanocomposites for Vertically Porous 3D Supercapacitor Electrodes. Scientific Reports, 2015, 5, 13696.	3.3	60
39	All-Soft Supercapacitors Based on Liquid Metal Electrodes with Integrated Functionalized Carbon Nanotubes. ACS Nano, 2020, 14, 5659-5667.	14.6	57
40	Role of anions on electrochemical exfoliation of graphite into graphene in aqueous acids. Carbon, 2020, 167, 816-825.	10.3	54
41	Submicron silicon encapsulated with graphene and carbon as a scalable anode for lithium-ion batteries. Carbon, 2017, 119, 438-445.	10.3	53
42	Structure-controlled graphene electrocatalysts for high-performance H ₂ O ₂ production. Energy and Environmental Science, 2022, 15, 2858-2866.	30.8	52
43	Pattern Transfer Printing of Multiwalled Carbon Nanotube Multilayers and Application in Biosensors. Chemistry of Materials, 2010, 22, 4791-4797.	6.7	51
44	Carbon Nanotube Web with Carboxylated Polythiophene "Assist―for High-Performance Battery Electrodes. ACS Nano, 2018, 12, 3126-3139.	14.6	51
45	In Situ Self-Formed Nanosheet MoS3/Reduced Graphene Oxide Material Showing Superior Performance as a Lithium-Ion Battery Cathode. ACS Nano, 2018, 13, 1490-1498.	14.6	49
46	Ultrathin supercapacitor electrodes with high volumetric capacitance and stability using direct covalent-bonding between pseudocapacitive nanoparticles and conducting materials. Nano Energy, 2015, 12, 612-625.	16.0	48
47	Pt-Covered Multiwall Carbon Nanotubes for Oxygen Reduction in Fuel Cell Applications. Journal of Physical Chemistry Letters, 2011, 2, 1332-1336.	4.6	47
48	Systematic Molecular Design of Ketone Derivatives of Aromatic Molecules for Lithiumâ€lon Batteries: Firstâ€Principles DFT Modeling. ChemSusChem, 2017, 10, 1584-1591.	6.8	44
49	Recent advances in non-precious group metal-based catalysts for water electrolysis and beyond. Journal of Materials Chemistry A, 2021, 10, 50-88.	10.3	44
50	In Situ Polymerization of Dopamine on Graphene Framework for Charge Storage Applications. Small, 2018, 14, e1801236.	10.0	40
51	High-yield electrochemical hydrogen peroxide production from an enhanced two-electron oxygen reduction pathway by mesoporous nitrogen-doped carbon and manganese hybrid electrocatalysts. Nanoscale Horizons, 2020, 5, 832-838.	8.0	40
52	Thermodynamic and redox properties of graphene oxides for lithium-ion battery applications: a first principles density functional theory modeling approach. Physical Chemistry Chemical Physics, 2016, 18, 20600-20606.	2.8	39
53	Understanding synergistic metal–oxide interactions of <i>in situ</i> exsolved metal nanoparticles on a pyrochlore oxide support for enhanced water splitting. Energy and Environmental Science, 2021, 14, 3053-3063.	30.8	39
54	Vacuum-Assisted Layer-by-Layer Nanocomposites for Self-Standing 3D Mesoporous Electrodes. Chemistry of Materials, 2014, 26, 5310-5318.	6.7	38

#	Article	IF	CITATIONS
55	Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage. Nanoscale, 2016, 8, 3671-3677.	5.6	38
56	Highly conductive electrocatalytic gold nanoparticle-assembled carbon fiber electrode for high-performance glucose-based biofuel cells. Journal of Materials Chemistry A, 2019, 7, 13495-13505.	10.3	36
57	Analyzing oxygen transport resistance and Pt particle growth effect in the cathode catalyst layer of polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2020, 45, 13414-13427.	7.1	35
58	Outstanding Lowâ€Temperature Performance of Structureâ€Controlled Graphene Anode Based on Surfaceâ€Controlled Charge Storage Mechanism. Advanced Functional Materials, 2021, 31, 2009397.	14.9	34
59	Synthesis, Activity and Durability of Pt Nanoparticles Supported on Multi-walled Carbon Nanotubes for Oxygen Reduction. Journal of the Electrochemical Society, 2011, 158, B1398.	2.9	33
60	Unveiled correlations between electron affinity and solvation in redox potential of quinone-based sodium-ion batteries. Energy Storage Materials, 2019, 19, 242-250.	18.0	32
61	Self-Assembled, Redox-Active Graphene Electrodes for High-Performance Energy Storage Devices. Journal of Physical Chemistry Letters, 2014, 5, 4324-4330.	4.6	31
62	Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage. Nanoscale, 2016, 8, 12330-12338.	5.6	31
63	Covalent organic frameworks: Design and applications in electrochemical energy storage devices. InformaÄnÃ-Materiály, 2022, 4, .	17.3	31
64	Charge-Transfer-Modulated Transparent Supercapacitor Using Multidentate Molecular Linker and Conductive Transparent Nanoparticle Assembly. ACS Nano, 2019, 13, 12719-12731.	14.6	29
65	Role of surface steps in activation of surface oxygen sites on Ir nanocrystals for oxygen evolution reaction in acidic media. Applied Catalysis B: Environmental, 2022, 302, 120834.	20.2	29
66	Improved capacity of redox-active functional carbon cathodes by dimension reduction for hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 3367-3375.	10.3	28
67	High surface area carbon from polyacrylonitrile for high-performance electrochemical capacitive energy storage. Journal of Materials Chemistry A, 2016, 4, 18294-18299.	10.3	27
68	Oxygen Reduction Activity of PtxNi1-x Alloy Nanoparticles on Multiwall Carbon Nanotubes. Electrochemical and Solid-State Letters, 2011, 14, B110.	2.2	26
69	Roomâ€Temperature Metallic Fusionâ€Induced Layerâ€byâ€Layer Assembly for Highly Flexible Electrode Applications. Advanced Functional Materials, 2019, 29, 1806584.	14.9	23
70	A dual-stage sodium thermal electrochemical converter (Na-TEC). Journal of Power Sources, 2017, 371, 217-224.	7.8	22
71	Nanoparticleâ€Based Electrodes with High Charge Transfer Efficiency through Ligand Exchange Layerâ€by‣ayer Assembly. Advanced Materials, 2020, 32, e2001924.	21.0	22
72	Parametric study of passive air-cooled polymer electrolyte membrane fuel cell stacks. International Journal of Heat and Mass Transfer, 2020, 156, 119886.	4.8	22

#	Article	IF	CITATIONS
73	Stitchable supercapacitors with high energy density and high rate capability using metal nanoparticle-assembled cotton threads. Journal of Materials Chemistry A, 2018, 6, 20421-20432.	10.3	21
74	Thinâ€Film Electrode Design for High Volumetric Electrochemical Performance Using Metal Sputteringâ€Combined Ligand Exchange Layerâ€byâ€Layer Assembly. Advanced Functional Materials, 2018, 28, 1804926.	14.9	19
75	Post-assembly modification of polymeric composite membranes using spin drying for fuel cell applications. Journal of Materials Chemistry A, 2019, 7, 7380-7388.	10.3	19
76	Porous Strained Pt Nanostructured Thinâ€Film Electrocatalysts via Dealloying for PEM Fuel Cells. Advanced Materials Interfaces, 2020, 7, 1901326.	3.7	19
77	Textileâ€Type Lithiumâ€ion Battery Cathode Enabling High Specific/Areal Capacities and High Rate Capability through Ligand Replacement Reactionâ€Mediated Assembly. Advanced Energy Materials, 2021, 11, 2101631.	19.5	19
78	CeO ₂ (111) Surface with Oxygen Vacancy for Radical Scavenging: A Density Functional Theory Approach. Journal of Physical Chemistry C, 2020, 124, 20950-20959.	3.1	18
79	Effect of the Side-Chain Length in Perfluorinated Sulfonic and Phosphoric Acid-Based Membranes on Nanophase Segregation and Transport: A Molecular Dynamics Simulation Approach. Journal of Physical Chemistry B, 2020, 124, 1571-1580.	2.6	18
80	Enhanced Lithium Storage of an Organic Cathode via the Bipolar Mechanism. ACS Applied Energy Materials, 2020, 3, 3728-3735.	5.1	18
81	Hydrothermally Oxidized Singleâ€Walled Carbon Nanotube Networks for High Volumetric Electrochemical Energy Storage. Small, 2016, 12, 3423-3431.	10.0	17
82	Interfacial Design and Assembly for Flexible Energy Electrodes with Highly Efficient Energy Harvesting, Conversion, and Storage. Advanced Energy Materials, 2021, 11, 2002969.	19.5	16
83	High purity hydrogen production via aqueous phase reforming of xylose over small Pt nanoparticles on a l³-Al2O3 support. International Journal of Hydrogen Energy, 2020, 45, 13848-13861.	7.1	15
84	Layerâ€byâ€Layer Assemblyâ€Based Electrocatalytic Fibril Electrodes Enabling Extremely Low Overpotentials and Stable Operation at 1ÃAÂcm ^{â^2} in Waterâ€Splitting Reaction. Advanced Functional Materials, 2021, 31, 2102530.	14.9	15
85	A Layerâ€byâ€Layer Assembly Route to Electroplated Fibrilâ€Based 3D Porous Current Collectors for Energy Storage Devices. Small, 2021, 17, e2007579.	10.0	13
86	Polyethylenimineâ€assisted Synthesis of Au Nanoparticles for Efficient Syngas Production. Electroanalysis, 2019, 31, 1401-1408.	2.9	12
87	Aluminum textile-based binder-free nanostructured battery cathodes using a layer-by-layer assembly of metal/metal oxide nanoparticles. Applied Physics Reviews, 2021, 8, .	11.3	12
88	Pseudocapacitance: Emergent Pseudocapacitance of 2D Nanomaterials (Adv. Energy Mater. 13/2018). Advanced Energy Materials, 2018, 8, 1870058.	19.5	10
89	Stacking ontrolled Assembly of Cabbage‣ike Graphene Microsphere for Charge Storage Applications. Small, 2018, 14, 1801948.	10.0	10
90	Electrochemical Performance of Thin-Film Functionalized Carbon Nanotube Electrodes in Nonaqueous Cells. Journal of the Electrochemical Society, 2014, 161, A1625-A1633.	2.9	9

#	Article	IF	CITATIONS
91	Improving Water Management and Performance of an Air-Cooled Fuel Cell System Using Pressurized Air for Aviation Applications. Journal of the Electrochemical Society, 2021, 168, 084503.	2.9	9
92	Synthesis and Oxygen Reduction Reaction Activity of Atomic and Nanoparticle Gold on Thiol-Functionalized Multiwall Carbon Nanotubes. Electrochemical and Solid-State Letters, 2011, 14, B105.	2.2	8
93	High-capacity sulfur copolymer cathode with metallic fibril-based current collector and conductive capping layer. Journal of Materials Chemistry A, 2021, 9, 2334-2344.	10.3	4
94	Fabrication of 3D structured composites of crumpled graphene, polyaniline and molybdenum disulfide nanosheets for high performance alkali metal ion storage. Advanced Powder Technology, 2021, 32, 464-471.	4.1	4
95	High-performance hybrid biofuel cells using amphiphilic assembly based enzyme electrodes. Applied Physics Reviews, 2022, 9, .	11.3	4
96	A Costâ€Performance Analysis of a Sodium Heat Engine for Distributed Concentrating Solar Power. Advanced Sustainable Systems, 2020, 4, 1900104.	5.3	3
97	Twoâ€Dimensional Polydopamine Positive Electrodes for Highâ€Capacity Alkali Metalâ€Ion Storage. ChemElectroChem, 2021, 8, 1070-1077.	3.4	3
98	Interfacial Li-Ion Storage between Graphene Layers. ECS Transactions, 2017, 77, 19-25.	0.5	2
99	A 3D Hierarchical Host with Enhanced Sodiophilicity Enabling Anodeâ€Free Sodiumâ€Metal Batteries (Adv.) Tj ET	Qg110.7	84314 rgBT
100	Techno-Economic Analysis of Dual-Stage Sodium Thermal Electrochemical Converter (Na-TEC) Power Block for Distributed CSP. , 2018, , .		1
101	Charge Transfer: Interfacial Design and Assembly for Flexible Energy Electrodes with Highly Efficient Energy Harvesting, Conversion, and Storage (Adv. Energy Mater. 27/2021). Advanced Energy Materials, 2021, 11, 2170108.	19.5	1
102	Unveiled Correlations between Electron Affinity and Solvation in Redox Potential of Quinone-Based Sodium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	1
103	Brazings for Metal-Ceramic Joining in Sodium Thermal Electrochemical Converter (Na-TEC) Devices. , 2018, , .		0
104	Nanoparticleâ€Based Electrodes: Nanoparticleâ€Based Electrodes with High Charge Transfer Efficiency through Ligand Exchange Layerâ€byâ€Layer Assembly (Adv. Mater. 51/2020). Advanced Materials, 2020, 32, 2070382.	21.0	0
105	Redox-Active Organic Positive Electrodes for Li- and Na-Ion Capacitors. ECS Meeting Abstracts, 2017, , .	0.0	0
106	Interfacial Li-Ion Storage Between Graphene Layers. ECS Meeting Abstracts, 2017, , .	0.0	0
107	Redox-Active Organic Electrodes for Pseudocapacitor Applications. ECS Meeting Abstracts, 2017, , .	0.0	0
108	Effects of Carboxylated Polythiophenes in Fe3O4 Li-Ion Battery Anodes. ECS Meeting Abstracts, 2017, , .	0.0	0

#	Article	IF	CITATIONS
109	Carbon-Based Electrodes for High Energy Electrochemical Capacitors. ECS Meeting Abstracts, 2017, , .	0.0	0
110	Polydopamine: A Promising Organic Cathode for Rechargeable Batteries. ECS Meeting Abstracts, 2017, , .	0.0	0
111	Hydrothermal Assembly of Submicron Si Recovered from Si Waste with Graphene and Carbon for Scalable Lithium Battery Anodes. ECS Meeting Abstracts, 2017, , .	0.0	0
112	(Invited) Redox-Active Carbon Positive Electrodes for High-Performance Hybrid Supercapacitors. ECS Meeting Abstracts, 2018, , .	0.0	0
113	Synthesis of Pt-M (M=Ir, Pd) Bimetallic Nanocrystals with Controlled Shape and Composition As a High-Performance Electrocatalyst for Ammonia Electrolysis. ECS Meeting Abstracts, 2018, , .	0.0	0
114	Surface-Controlled Charge Storage Mechanism of Graphene for Alkali Metal Ion Storage. ECS Meeting Abstracts, 2018, , .	0.0	0
115	Reduced Graphene Oxide As an Advanced Anode for Li-Ion Battery. ECS Meeting Abstracts, 2018, , .	0.0	0
116	(Invited) Facets of Nanocrystal: A Knob to Tune Electrocatalytic Activity. ECS Meeting Abstracts, 2018, ,	0.0	0
117	Study of Anodic Electrochemical Exfoliation of Graphite Under Acidic Electrolyte for Scalable Production of Graphene. ECS Meeting Abstracts, 2019, , .	0.0	0
118	(Invited) Pd Shape-Controlled Nanoparticles Decorated with Promoter Metals for Electrochemical Nitrate Reduction. ECS Meeting Abstracts, 2019, , .	0.0	0
119	Surface Modification of Pd Shape-Controlled Nanoparticles for Electrochemical Nitrate Reduction. ECS Meeting Abstracts, 2019, , .	0.0	0
120	Fundamental Understanding of Redox Characteristics of Defect-Rich Holey Graphene for Lithium Ion Energy Storage Devices. ECS Meeting Abstracts, 2019, , .	0.0	0
121	Outstanding Low-Temperature Performance of Structure-Controlled Crumpled Graphene Battery Anode Based on Surface-Controlled Charge Storage Mechanism. ECS Meeting Abstracts, 2019, , .	0.0	0
122	(Invited) Nanostructured Organic Electrodes for Electrochemical Energy Storage Applications. ECS Meeting Abstracts, 2019, , .	0.0	0
123	(Invited) Electrochemical Production of Graphene and Controlled Assembly of 3D Graphene Electrodes for Energy Storage Applications. ECS Meeting Abstracts, 2020, MA2020-01, 600-600.	0.0	0
124	(Invited) Controlled Assembly of 3D Graphene Electrodes for Enhanced Alkali Metal Storage. ECS Meeting Abstracts, 2020, MA2020-02, 333-333.	0.0	0
125	Pd Shape-Controlled Nanoparticles Decorated with Metals for Electrochemical Nitrate and Nitrite Reduction. ECS Meeting Abstracts, 2020, MA2020-02, 3268-3268.	0.0	0
126	(Invited) Design Strategies of PdCu Bimetals for Engineering Selectivity Toward Nitrogen and Ammonia from Electrochemical Nitrate Reduction. ECS Meeting Abstracts, 2021, MA2021-02, 1551-1551.	0.0	0

#	Article	IF	CITATIONS
127	3D Structured Graphene Anodes for Alkali Metal Ion Storage Applications. ECS Meeting Abstracts, 2021, MA2021-02, 529-529.	0.0	0