
Aliaksandra Radzisheuskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3686463/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sox2 modulation increases na $ ilde{A}$ ve pluripotency plasticity. IScience, 2021, 24, 102153.	4.1	12
2	Complex-dependent histone acetyltransferase activity of KAT8 determines its role in transcription and cellular homeostasis. Molecular Cell, 2021, 81, 1749-1765.e8.	9.7	42
3	MPP8 is essential for sustaining self-renewal of ground-state pluripotent stem cells. Nature Communications, 2021, 12, 3034.	12.8	35
4	Generation of locus-specific degradable tag knock-ins in mouse and human cell lines. STAR Protocols, 2021, 2, 100575.	1.2	4
5	PRMT5 Inhibition Modulates E2F1 Methylation and Gene-Regulatory Networks Leading to Therapeutic Efficacy in JAK2V617F-Mutant MPN. Cancer Discovery, 2020, 10, 1742-1757.	9.4	55
6	Distinct Molecular Trajectories Converge to Induce Naive Pluripotency. Cell Stem Cell, 2019, 25, 388-406.e8.	11.1	33
7	PRMT5 methylome profiling uncovers a direct link to splicing regulation in acute myeloid leukemia. Nature Structural and Molecular Biology, 2019, 26, 999-1012.	8.2	105
8	A Functional Link between Nuclear RNA Decay and Transcriptional Control Mediated by the Polycomb Repressive Complex 2. Cell Reports, 2019, 29, 1800-1811.e6.	6.4	32
9	Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for <scp>ESC</scp> selfâ€renewal and early development. EMBO Journal, 2016, 35, 1550-1564.	7.8	84
10	Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Research, 2016, 44, e141-e141.	14.5	118
11	NANOG Amplifies STAT3 Activation and They Synergistically Induce the Naive Pluripotent Program. Current Biology, 2014, 24, 340-346.	3.9	60
12	Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature, 2014, 507, 104-108.	27.8	358
13	Do all roads lead to Oct4? The emerging concepts of induced pluripotency. Trends in Cell Biology, 2014, 24, 275-284.	7.9	97
14	MBD3/NuRD Facilitates Induction of Pluripotency in a Context-Dependent Manner. Cell Stem Cell, 2014, 15, 102-110.	11.1	152
15	Tcf15 Primes Pluripotent Cells for Differentiation. Cell Reports, 2013, 3, 472-484.	6.4	56
16	A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nature Cell Biology, 2013, 15, 579-590.	10.3	195
17	Histone variant macroH2A marks embryonic differentiation <i>in vivo</i> and acts as an epigenetic barrier to induced pluripotency. Journal of Cell Science, 2012, 125, 6094-6104.	2.0	92
18	Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Development (Cambridge), 2011, 138, 4853-4865.	2.5	69

#	Article	IF	CITATIONS
19	Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Journal of Cell Science, 2011, 124, e1-e1.	2.0	0