Haibo Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3685381/publications.pdf

Version: 2024-02-01

6,282 212 44 citations h-index papers

60 g-index 214 214 214 3135 citing authors docs citations times ranked all docs

57758

128289

#	Article	IF	Citations
1	One-Step Synthesis of CuO–Cu ₂ O Heterojunction by Flame Spray Pyrolysis for Cathodic Photoelectrochemical Sensing of <scp>l</scp> -Cysteine. ACS Applied Materials & Interfaces, 2017, 9, 40452-40460.	8.0	145
2	Analysis of four Monte Carlo methods for the solution of population balances in dispersed systems. Powder Technology, 2007, 173, 38-50.	4.2	122
3	Investigation of Chemical Looping Combustion of Coal with CuFe ₂ O ₄ Oxygen Carrier. Energy & Carrier. Energy & Carrier. Energy & Energy	5.1	114
4	Chemical looping combustion of coal in a 5 kWth interconnected fluidized bed reactor using hematite as oxygen carrier. Applied Energy, 2015, 157, 304-313.	10.1	105
5	Thermodynamic Investigation of Carbon Deposition and Sulfur Evolution in Chemical Looping Combustion with Syngas. Energy & Fuels, 2008, 22, 1012-1020.	5.1	92
6	Flame spray pyrolysis synthesized ZnO/CeO 2 nanocomposites for enhanced CO 2 photocatalytic reduction under UV–Vis light irradiation. Journal of CO2 Utilization, 2017, 18, 53-61.	6.8	89
7	Sol–Gel-Derived NiO/NiAl ₂ O ₄ Oxygen Carriers for Chemical-Looping Combustion by Coal Char. Energy & Fuels, 2008, 22, 898-905.	5.1	88
8	Computational fluid dynamics simulation for chemical looping combustion of coal in a dual circulation fluidized bed. Energy Conversion and Management, 2015, 105, 1-12.	9.2	79
9	Characterization and evaluation of Fe2O3/Al2O3 oxygen carrier prepared by sol–gel combustion synthesis. Journal of Analytical and Applied Pyrolysis, 2011, 91, 105-113.	5.5	76
10	Numerical simulation of particle capture process of fibrous filters using Lattice Boltzmann two-phase flow model. Powder Technology, 2012, 227, 111-122.	4.2	76
11	Tailor-Made Core–Shell CaO/TiO ₂ –Al ₂ O ₃ Architecture as a High-Capacity and Long-Life CO ₂ Sorbent. Environmental Science & Envi	10.0	76
12	Copper-Decorated Hematite as an Oxygen Carrier for in Situ Gasification Chemical Looping Combustion of Coal. Energy & Samp; Fuels, 2014, 28, 3970-3981.	5.1	74
13	Simulation Study of an 800 MW _e Oxy-combustion Pulverized-Coal-Fired Power Plant. Energy & Fuels, 2011, 25, 2405-2415.	5.1	73
14	Characterization of natural copper ore as oxygen carrier in chemical-looping with oxygen uncoupling of anthracite. International Journal of Greenhouse Gas Control, 2014, 22, 154-164.	4.6	73
15	Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier. Applied Energy, 2015, 157, 408-415.	10.1	73
16	Development of tailor-made oxygen carriers and reactors for chemical looping processes at Huazhong University of Science & Echnology. International Journal of Greenhouse Gas Control, 2020, 93, 102898.	4.6	73
17	Synergistic effects of mixtures of iron ores and copper ores as oxygen carriers in chemical-looping combustion. Proceedings of the Combustion Institute, 2015, 35, 2811-2818.	3.9	72
18	Chemical looping gasification of biomass: Part I. screening Cu-Fe metal oxides as oxygen carrier and optimizing experimental conditions. Biomass and Bioenergy, 2018, 108, 146-156.	5.7	72

#	Article	IF	CITATIONS
19	Chemical Looping Combustion of Coal in China: Comprehensive Progress, Remaining Challenges, and Potential Opportunities. Energy &	5.1	72
20	Thermoeconomic operation optimization of a coal-fired power plant. Energy, 2012, 42, 486-496.	8.8	69
21	Chemical looping gasification of coal using calcium ferrites as oxygen carrier. Fuel Processing Technology, 2019, 192, 75-86.	7.2	69
22	Effects of furnace chamber shape on the MILD combustion of natural gas. Applied Thermal Engineering, 2015, 76, 64-75.	6.0	65
23	Exergy Analysis of a 600 MW _e Oxy-combustion Pulverized-Coal-Fired Power Plant. Energy & Exergy Fuels, 2011, 25, 3854-3864.	5.1	64
24	Numerical study of combustion characteristics for pulverized coal under oxy-MILD operation. Fuel Processing Technology, 2015, 135, 80-90.	7.2	62
25	Reducing Statistical Noise and Extending the Size Spectrum by Applying Weighted Simulation Particles in Monte Carlo Simulation of Coagulation. Aerosol Science and Technology, 2009, 43, 781-793.	3.1	58
26	Decomposition mechanisms of Cu-based oxygen carriers for chemical looping with oxygen uncoupling based on density functional theory calculations. Combustion and Flame, 2015, 162, 1265-1274.	5.2	58
27	On the high performance of a core-shell structured CaO-CuO/MgO@Al2O3 material in calcium looping integrated with chemical looping combustion (CaL-CLC). Chemical Engineering Journal, 2019, 368, 504-512.	12.7	58
28	Chemical looping combustion of a Chinese anthracite with Fe2O3-based and CuO-based oxygen carriers. Fuel Processing Technology, 2012, 96, 104-115.	7.2	57
29	An economic feasibility study of O2/CO2 recycle combustion technology based on existing coal-fired power plants in China. Fuel, 2009, 88, 1135-1142.	6.4	56
30	Simulation of filtration process for multi-fiber filter using the Lattice-Boltzmann two-phase flow model. Journal of Aerosol Science, 2013, 66, 164-178.	3.8	56
31	Evaluation of CaO-decorated Fe 2 O 3 /Al 2 O 3 as an oxygen carrier for in-situ gasification chemical looping combustion of plastic wastes. Fuel, 2016, 165, 235-243.	6.4	56
32	A differentially weighted Monte Carlo method for two-component coagulation. Journal of Computational Physics, 2010, 229, 6931-6945.	3.8	55
33	Evaluation of Manganese Minerals for Chemical Looping Combustion. Energy & Evels, 2015, 29, 6605-6615.	5.1	54
34	Chemical-looping gasification of biomass: Part II. Tar yields and distributions. Biomass and Bioenergy, 2018, 108, 178-189.	5.7	54
35	Self-assembly template combustion synthesis of a core–shell CuO@TiO2–Al2O3 hierarchical structure as an oxygen carrier for the chemical-looping processes. Combustion and Flame, 2015, 162, 3030-3045.	5.2	53
36	Comprehensive investigation of process characteristics for oxy-steam combustion power plants. Energy Conversion and Management, 2015, 99, 92-101.	9.2	53

#	Article	IF	Citations
37	Kinetics of redox reactions of CuO@TiO2–Al2O3 for chemical looping combustion and chemical looping with oxygen uncoupling. Combustion and Flame, 2020, 213, 255-267.	5.2	53
38	Chemical looping combustion of high-sulfur coal with NiFe2O4-combined oxygen carrier. Journal of Thermal Analysis and Calorimetry, 2014, 118, 1593-1602.	3.6	50
39	Optimization and control for CO 2 compression and purification unit in oxy-combustion power plants. Energy, 2015, 83, 416-430.	8.8	50
40	A population balance-Monte Carlo method for particle coagulation in spatially inhomogeneous systems. Computers and Fluids, 2013, 71, 196-207.	2.5	49
41	Characterization of a sol–gel derived CuO/CuAl2O4 oxygen carrier for chemical looping combustion (CLC) of gaseous fuels: Relevance of gas–solid and oxygen uncoupling reactions. Fuel Processing Technology, 2015, 133, 210-219.	7.2	49
42	Effect of Reaction Temperature on the Chemical Looping Combustion of Coal with CuFe ₂ O ₄ Combined Oxygen Carrier. Energy & Samp; Fuels, 2017, 31, 5233-5245.	5.1	48
43	Ce-modified SrFeO3- for ethane oxidative dehydrogenation coupled with CO2 splitting via a chemical looping scheme. Applied Catalysis B: Environmental, 2022, 303, 120894.	20.2	47
44	A new event-driven constant-volume method for solution of the time evolution of particle size distribution. Journal of Computational Physics, 2009, 228, 1412-1428.	3.8	46
45	Chemical-looping combustion of plastic wastes for in situ inhibition of dioxins. Combustion and Flame, 2018, 191, 9-18.	5.2	46
46	Performance of a 50†kWth coal-fuelled chemical looping combustor. International Journal of Greenhouse Gas Control, 2018, 75, 98-106.	4.6	46
47	Using the Sol–Gel-Derived CuO/CuAl ₂ O ₄ Oxygen Carrier in Chemical Looping with Oxygen Uncoupling for Three Typical Coals. Energy & Samp; Fuels, 2013, 27, 2723-2731.	5.1	44
48	Performance of cement decorated copper ore as oxygen carrier in chemical-looping with oxygen uncoupling. International Journal of Greenhouse Gas Control, 2015, 41, 210-218.	4.6	43
49	Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion. Applied Energy, 2017, 204, 242-253.	10.1	43
50	Dynamics of premixed CH4/air flames in a micro combustor with a plate flame holder and preheating channels. Energy, 2017, 139, 366-379.	8.8	43
51	Perovskite oxides for redox oxidative cracking of n-hexane under a cyclic redox scheme. Applied Catalysis B: Environmental, 2019, 246, 30-40.	20.2	43
52	The use of a low-cost oxygen carrier prepared from red mud and copper ore for in situ gasification chemical looping combustion of coal. Fuel Processing Technology, 2020, 205, 106460.	7.2	43
53	Continuous Operation of Interconnected Fluidized Bed Reactor for Chemical Looping Combustion of CH ₄ Using Hematite as Oxygen Carrier. Energy & Samp; Fuels, 2015, 29, 3257-3267.	5.1	42
54	Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier. Journal of Environmental Sciences, 2014, 26, 1062-1070.	6.1	40

#	Article	IF	CITATIONS
55	Reduction kinetics of hematite as oxygen carrier in chemical looping combustion. Fuel Processing Technology, 2017, 155, 160-167.	7.2	40
56	Thermoeconomic cost analysis of a 600MWe oxy-combustion pulverized-coal-fired power plant. International Journal of Greenhouse Gas Control, 2012, 9, 469-483.	4.6	39
57	Sulfur behavior in chemical-looping combustion using a copper ore oxygen carrier. Applied Energy, 2016, 166, 84-95.	10.1	39
58	Manganese Minerals as Oxygen Carriers for Chemical Looping Combustion of Coal. Industrial & Engineering Chemistry Research, 2016, 55, 6539-6546.	3.7	38
59	On a Highly Reactive Fe ₂ O ₃ /Al ₂ O ₃ Oxygen Carrier for <i>iin Situii); Gasification Chemical Looping Combustion. Energy & Samp; Fuels, 2014, 28, 7043-7052.</i>	5.1	37
60	Fate of Mercury in Volatiles and Char during in Situ Gasification Chemical-Looping Combustion of Coal. Environmental Science &	10.0	37
61	A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation. Energy, 2016, 98, 181-189.	8.8	35
62	Flame spray pyrolysis synthesized CuO-TiO2 nanoparticles for catalytic combustion of lean CO. Proceedings of the Combustion Institute, 2019, 37, 5499-5506.	3.9	35
63	In-situ gasification chemical looping combustion of plastic waste in a semi-continuously operated fluidized bed reactor. Proceedings of the Combustion Institute, 2019, 37, 4389-4397.	3.9	35
64	CPFD simulation and optimization of a 50 kWth dual circulating fluidized bed reactor for chemical looping combustion of coal. International Journal of Greenhouse Gas Control, 2019, 90, 102800.	4.6	35
65	Multi-Monte Carlo method for coagulation and condensation/evaporation in dispersed systems. Journal of Colloid and Interface Science, 2005, 286, 195-208.	9.4	34
66	Chemical looping dechlorination through adsorbent-decorated Fe2O3/Al2O3 oxygen carriers. Combustion and Flame, 2015, 162, 3503-3515.	5. 2	34
67	Dynamics of methane/air premixed flame in a mesoscale diverging combustor with/without a cylindrical flame holder. Fuel, 2018, 232, 659-665.	6.4	34
68	Insight into the Oxidation Mechanism of a Cu-Based Oxygen Carrier (Cu â†' Cu ₂ O â†' CuO) in Chemical Looping Combustion. Energy & Supply Su	5.1	34
69	The Influence of Fiber Geometry and Orientation Angle on Filtration Performance. Aerosol Science and Technology, 2015, 49, 75-85.	3.1	33
70	Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing. Journal of Computational Physics, 2015, 281, 844-863.	3.8	33
71	Chemical Looping Combustion of a Typical Lignite with a CaSO ₄ –CuO Mixed Oxygen Carrier. Energy & Fuels, 2017, 31, 13942-13954.	5.1	33
72	Sulfur Fate during the Lignite Pyrolysis Process in a Chemical Looping Combustion Environment. Energy & Energy	5.1	33

#	Article	IF	CITATIONS
73	Mechanistic investigation of chemical looping combustion of coal with Fe2O3 oxygen carrier. Fuel, 2011, 90, 2359-2366.	6.4	32
74	Synthesis Gas Generation by Chemical-Looping Reforming of Biomass with Natural Copper Ore as Oxygen Carrier. Waste and Biomass Valorization, 2015, 6, 81-89.	3.4	32
75	Causes and mitigation of gas temperature deviation in tangentially fired tower-type boilers. Applied Thermal Engineering, 2018, 139, 135-143.	6.0	32
76	Modeling of Gravitational Wet Scrubbers with Electrostatic Enhancement. Chemical Engineering and Technology, 2008, 31, 1824-1837.	1.5	31
77	Dynamic modeling and control for pulverized-coal-fired oxy-combustion boiler island. International Journal of Greenhouse Gas Control, 2014, 30, 97-117.	4.6	31
78	Understanding CuO-support interaction in Cu-based oxygen carriers at a microcosmic level. Proceedings of the Combustion Institute, 2017, 36, 4069-4077.	3.9	31
79	Anchoring mechanisms of methane/air premixed flame in a mesoscale diverging combustor with cylindrical flame holder. Fuel, 2018, 232, 591-599.	6.4	31
80	Low-temperature complete removal of toluene over highly active nanoparticles CuO-TiO2 synthesized via flame spray pyrolysis. Applied Catalysis B: Environmental, 2020, 264, 118427.	20.2	31
81	Lattice Boltzmann method for simulations of gas-particle flows over a backward-facing step. Journal of Computational Physics, 2013, 239, 57-71.	3.8	30
82	Chemical looping with oxygen uncoupling of high-sulfur coal using copper ore as oxygen carrier. Proceedings of the Combustion Institute, 2017, 36, 3381-3388.	3.9	30
83	NiO/NiAl2O4 oxygen carriers prepared by sol-gel for chemical-looping combustion fueled by gas. Journal of Fuel Chemistry and Technology, 2008, 36, 261-266.	2.0	29
84	Population Balance-Monte Carlo Simulation for Gas-to-Particle Synthesis of Nanoparticles. Aerosol Science and Technology, 2013, 47, 1125-1133.	3.1	29
85	Incorporating highly dispersed and stable Cu+ into TiO2 lattice for enhanced photocatalytic CO2 reduction with water. Applied Surface Science, 2020, 507, 145095.	6.1	29
86	Blow-off mechanism of a holder-stabilized laminar premixed flame in a preheated mesoscale combustor. Combustion and Flame, 2020, 220, 358-367.	5.2	29
87	Excess enthalpy combustion of methane-air in a novel micro non-premixed combustor with a flame holder and preheating channels. Fuel, 2020, 271, 117518.	6.4	29
88	Sulfur fate during in-situ gasification chemical looping combustion (iG-CLC) of coal. Chemical Engineering Journal, 2021, 406, 126773.	12.7	29
89	Monte Carlo solution of wet removal of aerosols by precipitation. Atmospheric Environment, 2006, 40, 1510-1525.	4.1	28
90	Correcting the multi-Monte Carlo method for particle coagulation. Powder Technology, 2009, 193, 120-123.	4.2	28

#	Article	IF	CITATIONS
91	Batch fluidized bed test of SATS-derived CaO/TiO2–Al2O3 sorbent for calcium looping. Fuel, 2016, 170, 226-234.	6.4	28
92	Thermal performance of solid walls in a mesoscale combustor with a plate flame holder and preheating channels. Energy, 2018, 157, 448-459.	8.8	28
93	Dynamic simulation for mode switching strategy in a conceptual 600 MWe oxy-combustion pulverized-coal-fired boiler. Fuel, 2014, 137, 135-144.	6.4	27
94	Plantwide control and operating strategy for air separation unit in oxy-combustion power plants. Energy Conversion and Management, 2015, 106, 782-792.	9.2	27
95	Numerical study of pressure drop and diffusional collection efficiency of several typical noncircular fibers in filtration. Powder Technology, 2016, 292, 232-241.	4.2	27
96	Modifying the interâ€phase drag via solid volume fraction gradient for CFD simulation of fast fluidized beds. AICHE Journal, 2017, 63, 2588-2598.	3.6	27
97	Using a hierarchically-structured CuO@TiO2-Al2O3 oxygen carrier for chemical looping air separation in a paralleled fluidized bed reactor. Chemical Engineering Journal, 2018, 334, 611-618.	12.7	27
98	Methane/air premixed flame topology structure in a mesoscale combustor with a plate flame holder and preheating channels. Energy, 2018, 165, 802-811.	8.8	27
99	Fate of fuel‑nitrogen during in situ gasification chemical looping combustion of coal. Fuel Processing Technology, 2021, 215, 106710.	7.2	27
100	Migration and Redistribution of Sulfur Species during Chemical Looping Combustion of Coal with CuFe ₂ O ₄ Combined Oxygen Carrier. Energy & Energy	5.1	26
101	Chemical Looping Combustion of Petroleum Coke with CuFe ₂ O ₄ as Oxygen Carrier. Chemical Engineering and Technology, 2013, 36, 1488-1495.	1.5	25
102	Simultaneous measurement of internal and external properties of nanoparticles in flame based on thermophoresis. Combustion and Flame, 2015, 162, 2200-2213.	5.2	25
103	In-Depth Investigation of Chemical Looping Combustion of a Chinese Bituminous Coal with CuFe ₂ O ₄ Combined Oxygen Carrier. Energy & Ener	5.1	25
104	Comparison of Largeâ€Scale Production Methods of Fe ₂ O ₃ /Al ₂ O ₃ Ecombustion. Chemical Engineering and Technology, 2014, 37, 1211-1219.	1.5	24
105	Fast Monte Carlo simulation for particle coagulation in population balance. Journal of Aerosol Science, 2014, 74, 11-25.	3.8	24
106	Mechanism and kinetics of Cu2O oxidation in chemical looping with oxygen uncoupling. Proceedings of the Combustion Institute, 2019, 37, 4371-4378.	3.9	24
107	Thermoeconomic cost analysis of CO 2 compression and purification unit in oxy-combustion power plants. Energy Conversion and Management, 2015, 106, 53-60.	9.2	23
108	Reduction kinetics analysis of sol–gel-derived CuO/CuAl2O4 oxygen carrier for chemical looping with oxygen uncoupling. Journal of Thermal Analysis and Calorimetry, 2016, 123, 745-756.	3.6	23

#	Article	IF	Citations
109	Using Copper Ore and Hematite Fine Particles as Raw Materials of an Oxygen Carrier for Chemical Looping Combustion of Coal: Spray Drying Granulation and Performance Evaluation. Energy & Energy & Fuels, 2020, 34, 8587-8599.	5.1	23
110	Flame spray pyrolysis made Pt/TiO2 photocatalysts with ultralow platinum loading and high hydrogen production activity. Proceedings of the Combustion Institute, 2021, 38, 6503-6511.	3.9	23
111	Chemical-Looping with Oxygen Uncoupling of Different Coals Using Copper Ore as an Oxygen Carrier. Energy & Ener	5.1	22
112	Application of CaO-Decorated Iron Ore for Inhibiting Chlorobenzene during <i>In Situ</i> Chemical Looping Combustion of Plastic Waste. Energy & Samp; Fuels, 2016, 30, 5999-6008.	5.1	22
113	Evaluation of a hierarchically-structured CuO@TiO2-Al2O3 oxygen carrier for chemical looping with oxygen uncoupling. Fuel, 2017, 209, 402-410.	6.4	22
114	Kinetics model for the reduction of Fe 2 O 3 \mid Al 2 O 3 by CO in Chemical Looping Combustion. Chemical Engineering and Processing: Process Intensification, 2018, 124, 137-146.	3.6	22
115	Investigation of Two Hematites as Oxygen Carrier and Two Low-Rank Coals as Fuel in Chemical Looping Combustion. Energy & Energy & 2017, 31, 1896-1903.	5.1	21
116	Co and Mo Co-doped Fe ₂ O ₃ for Selective Ethylene Production via Chemical Looping Oxidative Dehydrogenation. ACS Sustainable Chemistry and Engineering, 2021, 9, 8002-8011.	6.7	21
117	Multi-Monte Carlo method for particle coagulation: description and validation. Applied Mathematics and Computation, 2005, 167, 1383-1399.	2.2	20
118	Simulating and Modeling Particulate Removal Processes by Elliptical Fibers. Aerosol Science and Technology, 2014, 48, 207-218.	3.1	20
119	Exploring the microscopic reaction mechanism of H2S and COS with CuO oxygen carrier in chemical looping combustion. Fuel Processing Technology, 2020, 205, 106431.	7.2	20
120	Flame spray pyrolysis synthesis and H2S sensing properties of CuO-doped SnO2 nanoparticles. Proceedings of the Combustion Institute, 2021, 38, 6743-6751.	3.9	20
121	A stochastic simulation for the collection process of fly ashes in single-stage electrostatic precipitators. Fuel, 2008, 87, 2082-2089.	6.4	19
122	Techno-economic evaluation of oxy-combustion coal-fired power plants. Science Bulletin, 2011, 56, 3333.	1.7	19
123	Particle-resolved simulation and modeling of the conversion rate of coal char in chemical looping with oxygen uncoupling. Combustion and Flame, 2020, 213, 331-342.	5.2	19
124	Anchoring mechanisms of a holder-stabilized premixed flame in a preheated mesoscale combustor. Physics of Fluids, 2020, 32, .	4.0	19
125	Long-term coal chemical looping gasification using a bimetallic oxygen carrier of natural hematite and copper ore. Fuel, 2022, 309, 122106.	6.4	19
126	CFD-population balance Monte Carlo simulation and numerical optimization for flame synthesis of TiO2 nanoparticles. Proceedings of the Combustion Institute, 2017, 36, 1099-1108.	3.9	18

#	Article	IF	Citations
127	Experimental study on blow-off limit of a preheated and flame holder-stabilized laminar premixed flame. Chemical Engineering Science, 2020, 223, 115754.	3.8	18
128	Process design and exergy cost analysis of a chemical looping ammonia generation system using AlN/Al2O3 as a nitrogen carrier. Energy, 2021, 230, 120767.	8.8	18
129	Synergetic effects of cement bonded copper ore and red mud as oxygen carrier during in-situ gasification chemical looping combustion of coal char. Fuel, 2021, 303, 121295.	6.4	18
130	Deep Insight into the Mechanism of Catalytic Combustion of CO and CH ₄ over SrTi _{1â€"<i>x</i>} B _{<i>x</i>} O ₃ (B = Co, Fe, Mn, Ni, and Cu) Perovskite via Flame Spray Pyrolysis. ACS Applied Materials & Company Pyrolysis.	8.0	18
131	Dynamic exergy method and its application for CO2 compression and purification unit in oxy-combustion power plants. Chemical Engineering Science, 2016, 144, 336-345.	3.8	17
132	Intrinsic Reduction Kinetics Investigation on a Hematite Oxygen Carrier by CO in Chemical Looping Combustion. Energy & Energy & 2017, 31, 3010-3018.	5.1	17
133	Molecular Dynamics Simulation of the Microscopic Sintering Process of CuO Nanograins Inside an Oxygen Carrier Particle. Journal of Physical Chemistry C, 2018, 122, 25595-25605.	3.1	17
134	Simultaneous Control over Lattice Doping and Nanocluster Modification of a Hybrid CuO _x /TiO ₂ Photocatalyst during Flame Synthesis for Enhancing Hydrogen Evolution. Solar Rrl, 2018, 2, 1800215.	5.8	17
135	Thermodynamic and economic performance of oxy-combustion power plants integrating chemical looping air separation. Energy, 2020, 206, 118136.	8.8	17
136	Two-component Brownian coagulation: Monte Carlo simulation and process characterization. Particuology, 2011, 9, 414-423.	3.6	16
137	Pyrolysis kinetics of perfusion tubes under non-isothermal and isothermal conditions. Energy Conversion and Management, 2015, 106, 1048-1056.	9.2	16
138	Numerical Investigation on the Improvement of Carbon Conversion in a Dual Circulating Fluidized Bed Reactor for Chemical Looping Combustion of Coal. Energy & Samp; Fuels, 2019, 33, 12801-12813.	5.1	16
139	Chemical Looping Combustion Characteristics of Coal with a Novel CaSO ₄ –Ca ₂ CuO ₃ Mixed Oxygen Carrier. Energy & Camp; Fuels, 2020, 34, 7316-7328.	5.1	16
140	Effect of conjugate heat exchange of flame holder on laminar premixed flame stabilization in a meso-scale diverging combustor. Energy, 2020, 198, 117294.	8.8	16
141	CuO Quantum Dots Supported by SrTiO ₃ Perovskite Using the Flame Spray Pyrolysis Method: Enhanced Activity and Excellent Thermal Resistance for Catalytic Combustion of CO and CH ₄ . Environmental Science & Environmental Science	10.0	16
142	Multi-parameter measurements of laminar sooting flames using thermophoretic sampling technique. Combustion and Flame, 2017, 180, 158-166.	5.2	15
143	Macroscopic fuel reactor modelling of a 5â€kWth interconnected fluidized bed for in-situ gasification chemical looping combustion of coal. Chemical Engineering Journal, 2018, 348, 978-991.	12.7	15
144	Effect of thermal condition of solid wall on the stabilization of a preheated and holder-stabilized laminar premixed flame. Energy, 2020, 200, 117548.	8.8	15

#	Article	IF	Citations
145	The microscopic oxidation mechanism of NH3 on CuO(111): A first-principles study. Fuel Processing Technology, 2021, 213, 106712.	7.2	15
146	Monte Carlo Simulation for Aggregative Mixing of Nanoparticles in Two-Component Systems. Industrial & Description of Chemistry Research, 2011, 50, 10652-10664.	3.7	14
147	Error evaluation on pyrolysis kinetics of sawdust using iso-conversional methods. Journal of Thermal Analysis and Calorimetry, 2016, 124, 1635-1640.	3.6	14
148	Dynamic Exergy Method for Evaluating the Control and Operation of Oxy-Combustion Boiler Island Systems. Environmental Science & Environmental Science	10.0	14
149	Redox oxidative cracking of <i>n</i> -hexane with Fe-substituted barium hexaaluminates as redox catalysts. Catalysis Science and Technology, 2019, 9, 2211-2220.	4.1	14
150	The competition between direct gas–solid reduction and oxygen uncoupling of CuO oxygen carrier in chemical looping with oxygen uncoupling: A single particle simulation study. Combustion and Flame, 2020, 221, 219-227.	5.2	14
151	Dynamics of a holder-stabilized laminar methane-air premixed flame in a preheated mesoscale combustor at ultra-lean condition. Fuel, 2020, 279, 118473.	6.4	14
152	Laminar non-premixed flame patterns in compact micro disc-combustor with annular step and radial preheated channel. Combustion and Flame, 2021, 227, 465-480.	5.2	14
153	Synergistic reaction investigation of the NiO modified CaSO4 oxygen carrier with lignite for simultaneous CO2 capture and SO2 removal. Fuel Processing Technology, 2021, 220, 106895.	7.2	14
154	Simulated investigation of chemical looping combustion with coal-derived syngas and CaSO4 oxygen carrier. Journal of Fuel Chemistry and Technology, 2011, 39, 251-257.	2.0	13
155	Oxygen release kinetics and mechanism study on Cu-, Co-, Mn-based oxygen carrier. Journal of Fuel Chemistry and Technology, 2013, 41, 235-242.	2.0	13
156	Comparison of preparation methods for iron–alumina oxygen carrier and its reduction kinetics with hydrogen in chemical looping combustion. Asia-Pacific Journal of Chemical Engineering, 2014, 9, 610-622.	1.5	13
157	Chemical looping combustion characteristics of coal with Fe2O3 oxygen carrier. Journal of Thermal Analysis and Calorimetry, 2018, 132, 17-27.	3.6	13
158	Behavior of mercury in chemical looping with oxygen uncoupling of coal. Fuel Processing Technology, 2021, 216, 106747.	7.2	13
159	Tailor-making thermocouple junction for flame temperature measurement via dynamic transient method. Proceedings of the Combustion Institute, 2017, 36, 4443-4451.	3.9	12
160	Control optimization to achieve energy-efficient operation of the air separation unit in oxy-fuel combustion power plants. Energy, 2018, 152, 313-321.	8.8	12
161	Experimental and Simulated Investigation of Chemical Looping Combustion of Coal with Fe2O3 based Oxygen Carrier. Procedia Engineering, 2011, 16, 390-395.	1.2	11
162	Thermogravimetric Analysis of Rubber Glove Pyrolysis by Different Iso-conversional Methods. Waste and Biomass Valorization, 2015, 6, 527-533.	3.4	11

#	Article	IF	CITATIONS
163	Reaction Characteristic Investigation of the Combined Template-Method-Made CaSO ₄ â€"Mn ₃ O ₄ Mixed Oxygen Carrier with Lignite. Energy & Energy	5.1	11
164	Interaction mechanism among CO, H2S and CuO oxygen carrier in chemical looping combustion: A density functional theory calculation study. Proceedings of the Combustion Institute, 2021, 38, 5281-5288.	3.9	11
165	Anomalous blow-off behavior of a holder-stabilized premixed flame in a preheated mesoscale combustor. Combustion and Flame, 2021, 230, 111452.	5.2	11
166	Binary-ore oxygen carriers prepared by extrusion–spheronization method for chemical looping combustion of coal. Fuel Processing Technology, 2021, 221, 106921.	7.2	11
167	Numerical investigation on non-steady-state filtration of elliptical fibers for submicron particles in the â€~â€~Greenfield gap'' range. Journal of Aerosol Science, 2017, 114, 263-275.	3.8	10
168	Flammability limit of methane-air nonpremixed mixture in a micro preheated combustor with a flame holder. Chemical Engineering Science, 2020, 227, 115914.	3.8	10
169	Stochastic algorithm and numerical simulation for drop scavenging of aerosols. Applied Mathematics and Mechanics (English Edition), 2006, 27, 1321-1332.	3.6	9
170	Dependence of Steady-State Compositional Mixing Degree on Feeding Conditions in Two-Component Aggregation. Industrial & Engineering Chemistry Research, 2014, 53, 6047-6055.	3.7	9
171	Extension and evaluation of a macroscopic model for syngas-fueled chemical looping combustion. Chemical Engineering and Processing: Process Intensification, 2018, 133, 106-116.	3.6	9
172	One-Step Synthesis of Nanostructured Cu–Mn/TiO ₂ via Flame Spray Pyrolysis: Application to Catalytic Combustion of CO and CH ₄ . Energy & Energ	5.1	9
173	Identifying the contribution of rich-CO2/H2O gasification on the char conversion in typical atmospheres of chemical looping with oxygen uncoupling via single particle simulation. Combustion and Flame, 2021, 229, 111397.	5.2	9
174	Photothermocatalytic Removal of CO and Formaldehyde with Excellent Water Vapor Stability over Dualâ€Functional Copper Loading on TiO⟨sub⟩2⟨/sub⟩ Synthesized via Flame Spray Pyrolysis. Solar Rrl, 2021, 5, 2100490.	5.8	9
175	Performance Evaluation of Inexpensive Cu/Fe-Based Oxygen Carriers in Chemical Looping Gasification of Coal. Energy & Coals, 2021, 35, 15513-15524.	5.1	9
176	Multi-monte-carlo method for general dynamic equation considering particle coagulation. Applied Mathematics and Mechanics (English Edition), 2005, 26, 953-962.	3.6	8
177	Blowout limit of premixed flame in a micro preheated combustor with a flame holder at different blockage ratios. International Journal of Hydrogen Energy, 2020, 45, 25468-25478.	7.1	8
178	Effect of coal ash on the performance of CuO@TiO2-Al2O3 in chemical looping with oxygen uncoupling. Fuel Processing Technology, 2021, 221, 106935.	7.2	8
179	Semi-continuous Operation of Chemical Looping Combustion of Coal Using a Low-Cost Composite Oxygen Carrier. Energy & Description of Coal Using a Low-Cost Composite Oxygen Carrier.	5.1	8
180	Differentially weighted direct simulation Monte Carlo method for particle collision in gas–solid flows. Particuology, 2015, 21, 135-145.	3.6	7

#	Article	IF	CITATIONS
181	Virtual Special Issue of Recent Research Advances in China: Chemical Looping. Energy & Samp; Fuels, 2021, 35, 3-6.	5.1	7
182	Size Effect of (CuO) $<$ sub $>$ $<$ i $>$ n $<$ i $>$ c sub $>$ ($<$ i $>$ n $<$ i $>$ â \in %=a \in % 1 â \in "6) Clusters on the Modification of Rutilea \in "TiO $<$ sub $>$ 2 $<$ /sub $>$ Photocatalysts. Energy Technology, 2022, 10, 2100161.	3.8	7
183	Chemical Looping Combustion of Coal Chars Using Iron Ore of Different Grades as Oxygen Carriers. Energy & Energ	5.1	7
184	The Cytoplasmic Dynein Associated Protein NDE1 Regulates Osteoclastogenesis by Modulating M-CSF and RANKL Signaling Pathways. Cells, 2022, 11, 13.	4.1	7
185	Simulation and investigation of periodic deflecting oscillation of gas–solid planar opposed jets. Chemical Engineering and Processing: Process Intensification, 2014, 76, 6-15.	3.6	6
186	Population balance Monte Carlo simulation of self-assembly of core (micro-Al2O3)-shell (nano-TiO2) structure in aqueous suspensions. Chemical Engineering Science, 2019, 199, 100-112.	3.8	6
187	Anomalous blow-off limit of methane-air premixed flame in a micro preheated combustor with a flame holder. International Journal of Hydrogen Energy, 2020, 45, 31202-31212.	7.1	6
188	Investigation on iron ore for the oxygen carrier aided combustion. Fuel Processing Technology, 2022, 230, 107214.	7.2	6
189	Monte carlo simulation for simultaneous particle coagulation and deposition. Science in China Series D: Earth Sciences, 2006, 49, 222-237.	0.9	5
190	Ultra-lean blow-off dynamics of a holder-stabilized premixed flame in a preheated mesoscale combustor near laminar critical condition. Energy, 2021, 228, 120627.	8.8	5
191	Multi-scale kinetic study of the oxygen uncoupling of CuO oxygen carrier in chemical looping. Chemical Engineering Journal, 2022, 433, 133784.	12.7	5
192	A comparative process simulation study of Ca Cu looping involving post-combustion CO2 capture. Chinese Journal of Chemical Engineering, 2020, 28, 2382-2390.	3.5	4
193	The event-driven constant volume method for particle coagulation dynamics. Science in China Series D: Earth Sciences, 2008, 51, 1255-1271.	0.9	3
194	Conservative particle weighting scheme for particle collision in gas-solid flows. International Journal of Multiphase Flow, 2016, 83, 12-26.	3.4	3
195	Ultra-rich fuel dynamics of a holder-stabilized premixed flame in a preheated mesoscale combustor. Energy, 2021, 214, 118960.	8.8	3
196	A modified intrinsic model for conversion rate of coal char particle in chemical looping with oxygen uncoupling conditions. Fuel, 2021, 288, 119615.	6.4	3
197	Simulation and Exergy Analysis of a 600 MWe Oxy-Combustion Pulverized Coal-Fired Power Plant. , 2013, , 1195-1199.		3
198	TGA-FTIR investigation of the chemical looping combustion by coal with a CuO-Fe $<$ inf $>$ 0 $<$ inf $>$ 3 $<$ /inf $>$ combined oxygen carrier. , 2011, , .		2

#	Article	IF	CITATIONS
199	Technical Issues in Financing and Managing Risk of Large-scale Oxyfuel CO2 Capture Power Plant in China. Energy Procedia, 2014, 63, 7234-7241.	1.8	2
200	Identification of the compensation effect in the characteristic sintering time model for population balances. Journal of Aerosol Science, 2015, 82, 1-12.	3.8	2
201	Predictions on dynamic evolution of compositional mixing degree in two-component aggregation. Journal of Aerosol Science, 2016, 101, 10-21.	3.8	2
202	Reaction characteristics investigation of CeO2-enhanced CaSO4 oxygen carrier with lignite. Chinese Journal of Chemical Engineering, 2022, 42, 319-328.	3.5	2
203	Reactor Design, Cold-Model Experiment and CFD Modeling for Chemical Looping Combustion. , 2013, , 1209-1217.		2
204	Investigation of Chemical Looping Combustion of Coal with Fe2O3 Oxygen Carrier., 2011,,.		1
205	Uniform-Design-Based Optimization for Fuel Reactor of Chemical Looping Combustion. International Journal of Chemical Reactor Engineering, 2017, 15, .	1.1	1
206	Effect of Heating Rate on Chemical Looping Combustion of Coal with Fe2O3 Oxygen Carrier. , 2011, , .		0
207	Assessing the Option Value of Retrofitting a 200MW Power Plant to Oxyfuel CO2 Capture. Energy Procedia, 2014, 63, 7330-7336.	1.8	0
208	Numerical Simulation of an Entrained Flow Gasifier by an Eulerian Model., 2016,, 585-590.		0
209	Dynamic Simulation and Control Design for Pulverized-Coal-Fired Oxy-Combustion Power Plants. , 2016, , 325-333.		0
210	Control Concepts, Dynamic Behavior and Mode Transition Strategy for Oxy-fuel Combustion Systems., 2018,, 239-262.		0
211	System Integration and Optimization for Large Scale Oxy-fuel Combustion Systems. , 2018, , 223-238.		0
212	High-Performance of SATS-Derived CaO/TiO2–Al2O3 Sorbent for CO2 Capture in Batch Fluidized Bed. , 2016, , 341-346.		0