
Ragunath Singaravelu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3684838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-dose replicating poxvirus vector-based RBD vaccine drives robust humoral and TÂcell immune response against SARS-CoV-2 infection. Molecular Therapy, 2022, 30, 1885-1896.	3.7	16
2	Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nature Communications, 2022, 13, 1898.	5.8	16
3	Identification of FDA-approved Bifonazole as SARS-CoV-2 blocking agent following a bioreporter drug screen. Molecular Therapy, 2022, , .	3.7	5
4	Profiling of MicroRNA Targets Using Activity-Based Protein Profiling: Linking Enzyme Activity to MicroRNA-185 Function. Cell Chemical Biology, 2021, 28, 202-212.e6.	2.5	9
5	Characterization of Critical Determinants of ACE2–SARS CoV-2 RBD Interaction. International Journal of Molecular Sciences, 2021, 22, 2268.	1.8	24
6	A High-Throughput NanoBiT-Based Serological Assay Detects SARS-CoV-2 Seroconversion. Nanomaterials, 2021, 11, 807.	1.9	7
7	SARS-CoV-2 S1 NanoBiT: A nanoluciferase complementation-based biosensor to rapidly probe SARS-CoV-2 receptor recognition. Biosensors and Bioelectronics, 2021, 180, 113122.	5.3	21
8	Nanoluciferase complementation-based bioreporter reveals the importance of N-linked glycosylation of SARS-CoV-2ÂS for viral entry. Molecular Therapy, 2021, 29, 1984-2000.	3.7	19
9	Detection of SARS-CoV-2 Receptor-Binding Domain Antibody using a HiBiT-Based Bioreporter. Journal of Visualized Experiments, 2021, , .	0.2	1
10	Antiviral Potential of the Antimicrobial Drug Atovaquone against SARS-CoV-2 and Emerging Variants of Concern. ACS Infectious Diseases, 2021, 7, 3034-3051.	1.8	17
11	Hippo Signaling Pathway as a Central Mediator of Receptors Tyrosine Kinases (RTKs) in Tumorigenesis. Cancers, 2020, 12, 2042.	1.7	14
12	Implications for SARS-CoV-2 Vaccine Design: Fusion of Spike Glycoprotein Transmembrane Domain to Receptor-Binding Domain Induces Trimerization. Membranes, 2020, 10, 215.	1.4	20
13	Engineering vaccinia virus as an immunotherapeutic battleship to overcome tumor heterogeneity. Expert Opinion on Biological Therapy, 2020, 20, 1083-1097.	1.4	15
14	Deletion of Apoptosis Inhibitor F1L in Vaccinia Virus Increases Safety and Oncolysis for Cancer Therapy. Molecular Therapy - Oncolytics, 2019, 14, 246-252.	2.0	19
15	A conserved miRNA-183 cluster regulates the innate antiviral response. Journal of Biological Chemistry, 2019, 294, 19785-19794.	1.6	20
16	Concise Review: Targeting Cancer Stem Cells and Their Supporting Niche Using Oncolytic Viruses. Stem Cells, 2019, 37, 716-723.	1.4	25
17	MicroRNA-7 mediates cross-talk between metabolic signaling pathways in the liver. Scientific Reports, 2018, 8, 361.	1.6	24
18	MicroRNA-124 Regulates Fatty Acid and Triglyceride Homeostasis. IScience, 2018, 10, 149-157.	1.9	24

2

RAGUNATH SINGARAVELU

#	Article	IF	CITATIONS
19	microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1058-1067.	1.1	158
20	6-Hydroxydopamine Inhibits the Hepatitis C Virus through Alkylation of Host and Viral Proteins and the Induction of Oxidative Stress. ACS Infectious Diseases, 2016, 2, 863-871.	1.8	3
21	The role of microRNAs in metabolic interactions between viruses and their hosts. Current Opinion in Virology, 2016, 19, 71-76.	2.6	20
22	Macrophage Mitochondrial Energy Status Regulates Cholesterol Efflux and Is Enhanced by Anti-miR33 in Atherosclerosis. Circulation Research, 2015, 117, 266-278.	2.0	158
23	Soraphen A: A Probe for Investigating the Role of de Novo Lipogenesis during Viral Infection. ACS Infectious Diseases, 2015, 1, 130-134.	1.8	12
24	Armand-Frappier Outstanding Student Award — The emerging role of 25-hydroxycholesterol in innate immunity. Canadian Journal of Microbiology, 2015, 61, 521-530.	0.8	12
25	MicroRNAs regulate the immunometabolic response to viral infection in the liver. Nature Chemical Biology, 2015, 11, 988-993.	3.9	76
26	Hepatitis C virus induced up-regulation of microRNA-27: A novel mechanism for hepatic steatosis. Hepatology, 2014, 59, 98-108.	3.6	110
27	Investigating the antiviral role of cell deathâ€inducing <scp>DFF</scp> 45â€iike effector B in <scp>HCV</scp> replication. FEBS Journal, 2014, 281, 3751-3765.	2.2	5
28	Hepatitis C virus and microRNAs: miRed in a host of possibilities. Current Opinion in Virology, 2014, 7, 1-10.	2.6	46
29	Stearoyl-CoA desaturase inhibition blocks formation of hepatitis C virus-induced specialized membranes. Scientific Reports, 2014, 4, 4549.	1.6	53
30	Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells. Biochemical and Biophysical Research Communications, 2013, 441, 447-452.	1.0	21
31	Fluorescence Lifetime Imaging of Alterations to Cellular Metabolism by Domain 2 of the Hepatitis C Virus Core Protein. PLoS ONE, 2013, 8, e66738.	1.1	32
32	Systems biology methods help develop a better understanding of hepatitis C virus-induced liver injury. Hepatology, 2012, 56, 1-4.	3.6	19
33	Enhanced Specificity of the Viral Suppressor of RNA Silencing Protein p19 toward Sequestering of Human MicroRNA-122. Biochemistry, 2011, 50, 7745-7755.	1.2	24
34	Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nature Chemical Biology, 2011, 7, 137-145.	3.9	207
35	Competing roles of microRNA-122 recognition elements in hepatitis C virus RNA. Virology, 2011, 410, 336-344.	1.1	56
36	An enzyme-linked assay for the rapid quantification of microRNAs based on the viral suppressor of RNA silencing protein p19. Analytical Biochemistry, 2011, 412, 165-172.	1.1	46

3

#	Article	IF	CITATIONS
37	Activity-based protein profiling of the hepatitis C virus replication in Huh-7 hepatoma cells using a non-directed active site probe. Proteome Science, 2010, 8, 5.	0.7	36
38	Host–virus interactions during hepatitis C virus infection: a complex and dynamic molecular biosystem. Molecular BioSystems, 2010, 6, 1131.	2.9	29