Hai-Ping Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3683023/publications.pdf

Version: 2024-02-01

			50276	8	35541
	185	7,231	46		71
ı	papers	citations	h-index		g-index
	204	204	204		4036
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Selective Difunctionalization of Unactivated Aliphatic Alkenes Enabled by a Metal–Metallaaromatic Catalytic System. Journal of the American Chemical Society, 2022, 144, 2301-2310.	13.7	38
2	Optically reconfigurable shape memory metallo-polymer mediated by a carbolong complex and radically exchangeable covalent bond. Polymer Chemistry, 2022, 13, 1844-1851.	3.9	8
3	An osmium-peroxo complex for photoactive therapy of hypoxic tumors. Nature Communications, 2022, 13, 2245.	12.8	53
4	A <scp>Oneâ€Pot</scp> Strategy for the Synthesis of <scp><i>β</i>â€Substituted</scp> Rhoda―and <scp>Iridaâ€Carbolong</scp> Complexes. Chinese Journal of Chemistry, 2022, 40, 1777-1784.	4.9	8
5	Conjugated polymers based on metalla-aromatic building blocks. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	12
6	Direct amidation of metallaaromatics: access to $\langle i \rangle N \langle i \rangle$ -functionalized osmapentalynes $\langle i \rangle via \langle i \rangle$ a 1,5-bromoamidated intermediate. Chemical Science, 2021, 12, 6315-6322.	7.4	10
7	Carbolong chemistry: nucleophilic aromatic substitution of a triflate functionalized iridapentalene. Chemical Communications, 2021, 57, 8464-8467.	4.1	9
8	Control of quantum interference in single-molecule junctions via Jahn-Teller distortion. Cell Reports Physical Science, 2021, 2, 100329.	5.6	12
9	Carbolong Chemistry: Planar CCCCX-Type (X = N, O, S) Pentadentate Chelates by Formal [3+1] Cycloadditions of Metalla-Azirines with Terminal Alkynes. CCS Chemistry, 2021, 3, 758-763.	7.8	11
10	Tuning an Electrode Work Function Using Organometallic Complexes in Inverted Perovskite Solar Cells. Journal of the American Chemical Society, 2021, 143, 7759-7768.	13.7	85
11	Synthesis, Characterization, and Reactivity of Metallaâ€Chalcogenirenium Compounds ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1558-1564.	4.9	12
12	Cobalt-Catalyzed (<i>E</i>)-Selective Hydrosilylation of 1,3-Enynes for the Synthesis of 1,3-Dienylsilanes. Organometallics, 2021, 40, 2070-2080.	2.3	12
13	Nanographene–Osmapentalyne Complexes as a Cathode Interlayer in Organic Solar Cells Enhance Efficiency over 18%. Advanced Materials, 2021, 33, e2101279.	21.0	129
14	Reversible Switching between Destructive and Constructive Quantum Interference Using Atomically Precise Chemical Gating of Single-Molecule Junctions. Journal of the American Chemical Society, 2021, 143, 9385-9392.	13.7	50
15	Sub-nanometer supramolecular rectifier based on the symmetric building block with destructive If-interference. Science China Chemistry, 2021, 64, 1426-1433.	8.2	8
16	Electrophilic aromatic substitution reactions of compounds with Craig-MÃ \P bius aromaticity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
17	Metallacycle Expansion and Annulation: Access to <scp>Tetrazoloâ€Fused</scp> Osmacycles by Reaction of Cyclic Osmium Carbyne with Sodium Azide. Chinese Journal of Chemistry, 2021, 39, 3435-3442.	4.9	13
18	Releasing Antiaromaticity in Metal-Bridgehead Naphthalene. Journal of the American Chemical Society, 2021, 143, 15587-15592.	13.7	26

#	Article	IF	Citations
19	Tough self-reporting elastomer with NIR induced shape memory effect. Giant, 2021, 8, 100069.	5.1	10
20	Synthesis and Reactivity Studies of Irida-carbolong Complexes. Acta Chimica Sinica, 2021, 79, 71.	1.4	6
21	Electric-Field-Induced Connectivity Switching in Single-Molecule Junctions. IScience, 2020, 23, 100770.	4.1	34
22	Metallaaromatic Chemistry: History and Development. Chemical Reviews, 2020, 120, 12994-13086.	47.7	130
23	Identifying the Conformational Isomers of Single-Molecule Cyclohexane at Room Temperature. CheM, 2020, 6, 2770-2781.	11.7	40
24	Dioxygen Activation by Internally Aromatic Metallacycle: Crystallographic Structure and Mechanistic Investigations. IScience, 2020, 23, 101379.	4.1	6
25	Bis(phosphine)cobalt-Catalyzed Highly Regio- and Stereoselective Hydrosilylation of 1,3-Diynes. Organometallics, 2020, 39, 4437-4443.	2.3	17
26	Competition between Ring-Closing Migratory Insertion Polymerization and Monomer Cyclization. Organometallics, 2020, 39, 2991-2997.	2.3	3
27	Extension of the Simmons–Smith reaction to metal-carbynes: efficient synthesis of metallacyclopropenes with σ-aromaticity. Chemical Science, 2020, 11, 10159-10166.	7.4	19
28	Addition of alkynes and osmium carbynes towards functionalized dπ–pπ conjugated systems. Nature Communications, 2020, 11, 4651.	12.8	41
29	[3+2] cycloaddition reaction of metallacyclopropene with nitrosonium ion: isolation of aromatic metallaisoxazole. Chemical Communications, 2020, 56, 6806-6809.	4.1	9
30	The First <scp>OCCCO</scp> Pentadentate Chelates: Osmium Mediated Stepwise Oxidations of Terminal Alkynes by Pyridine <scp><i>N</i>â€Oxide</scp> . Chinese Journal of Chemistry, 2020, 38, 1273-1279.	4.9	10
31	A Bidentate Ru(II)-NC Complex as a Catalyst for Semihydrogenation of Alkynes to (<i>E</i>)-Alkenes with Ethanol. Organometallics, 2020, 39, 862-869.	2.3	21
32	Dynamic Polymer Network System Mediated by Radically Exchangeable Covalent Bond and Carbolong Complex. ACS Macro Letters, 2020, 9, 344-349.	4.8	30
33	Access to tetracyclic aromatics with bridgehead metals via metalla-click reactions. Science Advances, 2020, 6, eaay2535.	10.3	19
34	Manganese(I)-Catalyzed Transfer Hydrogenation and Acceptorless Dehydrogenative Condensation: Promotional Influence of the Uncoordinated N-Heterocycle. Organometallics, 2019, 38, 3218-3226.	2.3	47
35	Reactions of Metallacyclopentadiene with Terminal Alkynes: Isolation and Characterization of Metallafulvenallene Complexes. Organometallics, 2019, 38, 3053-3059.	2.3	13
36	Highly Regio- and Stereoselective Tridentate N ^C NN Cobalt-Catalyzed 1,3-Diyne Hydrosilylation. Organometallics, 2019, 38, 4341-4350.	2.3	22

#	Article	IF	Citations
37	Rhodapentalenes: Pincer Complexes with Internal Aromaticity. IScience, 2019, 19, 1214-1224.	4.1	13
38	"Carbolong―polymers with near infrared triggered, spatially resolved and rapid self-healing properties. Polymer Chemistry, 2019, 10, 386-394.	3.9	27
39	Access to Metalâ€Bridged Osmathiazine Derivatives by a Formal [4+2] Cyclization. Chemistry - A European Journal, 2019, 25, 5077-5085.	3.3	4
40	Electric field–induced selective catalysis of single-molecule reaction. Science Advances, 2019, 5, eaaw3072.	10.3	161
41	Multicenterâ€Bondâ€Based Quantum Interference in Charge Transport Through Singleâ€Molecule Carborane Junctions. Angewandte Chemie - International Edition, 2019, 58, 10601-10605.	13.8	59
42	Modularized Tuning of Charge Transport through Highly Twisted and Localized Single-Molecule Junctions. Journal of Physical Chemistry Letters, 2019, 10, 3453-3458.	4.6	22
43	Formal [2 + 2 + 2] Cycloaddition Reaction of a Metal–Carbyne Complex with Nitriles: Synthesis of a Metallapyrazine Complex. Organometallics, 2019, 38, 2264-2271.	2.3	7
44	Synthesis and characterization of metallapentalenoxazetes by the [2+2] cycloaddition of metallapentalynes with nitrosoarenes. Chemical Communications, 2019, 55, 6237-6240.	4.1	8
45	Successive modification of polydentate complexes gives access to planar carbon- and nitrogen-based ligands. Nature Communications, 2019, 10, 1488.	12.8	17
46	Membrane Fouling and Performance of Flat Ceramic Membranes in the Application of Drinking Water Purification. Water (Switzerland), 2019, 11, 2606.	2.7	21
47	Unveiling how intramolecular stacking modes of covalently linked dimers dictate photoswitching properties. Nature Communications, 2019, 10, 5480.	12.8	6
48	One-pot syntheses of irida-polycyclic aromatic hydrocarbons. Chemical Science, 2019, 10, 10894-10899.	7.4	20
49	Carbolong Complexes as Photothermal Materials. Chinese Journal of Organic Chemistry, 2019, 39, 1743.	1.3	6
50	Isolation of an Elevenâ€Atom Polydentate Carbonâ€Chain Chelate Obtained by Cycloaddition of a Cyclic Osmium Carbyne with an Alkyne. Angewandte Chemie - International Edition, 2018, 57, 3154-3157.	13.8	36
51	Isolation of an Elevenâ€Atom Polydentate Carbonâ€Chain Chelate Obtained by Cycloaddition of a Cyclic Osmium Carbyne with an Alkyne. Angewandte Chemie, 2018, 130, 3208-3211.	2.0	11
52	Synthesis and Characterization of an Osmapentalene Derivative Containing a β-Agostic OsÂ-Â-Â-H–C(sp ³) Interaction. Organometallics, 2018, 37, 618-623.	2.3	12
53	Synthesis and Characterization of Photothermal Osmium Carbolong Complexes. Chemistry - A European Journal, 2018, 24, 8375-8381.	3.3	20
54	A missing member of conjugated N-heterocycles: realizing pyrido $[1,2-\hat{l}\pm]$ azepine by reacting ruthenium alkenylcarbene complex with alkyne. Chemical Communications, 2018, 54, 4009-4012.	4.1	10

#	Article	IF	CITATIONS
55	Photothermal MÃ \P bius aromatic metallapentalenofuran and its NIR-responsive copolymer. Polymer Chemistry, 2018, 9, 2092-2100.	3.9	25
56	Rational Design and Synthesis of Unsaturated Seâ€Containing Osmacycles with Ïfâ€Aromaticity. Chemistry - A European Journal, 2018, 24, 2296-2296.	3.3	2
57	Identifying the Active Site of N-Doped Graphene for Oxygen Reduction by Selective Chemical Modification. ACS Energy Letters, 2018, 3, 986-991.	17.4	102
58	Rational Design and Synthesis of Unsaturated Seâ€Containing Osmacycles with Ïfâ€Aromaticity. Chemistry - A European Journal, 2018, 24, 2389-2395.	3.3	35
59	Metalla-aromatic loaded magnetic nanoparticles for MRI/photoacoustic imaging-guided cancer phototherapy. Journal of Materials Chemistry B, 2018, 6, 2528-2535.	5.8	42
60	Constructing canopy-shaped molecular architectures to create local Pt surface sites with high tolerance to H ₂ S and CO for hydrogen electrooxidation. Energy and Environmental Science, 2018, 11, 166-171.	30.8	32
61	Metallaaromatics Containing Mainâ€group Heteroatoms. Chinese Journal of Chemistry, 2018, 36, 93-105.	4.9	39
62	Nickel Complexes with Nonâ€innocent Ligands as Highly Active Electrocatalysts for Hydrogen Evolution. Chinese Journal of Chemistry, 2018, 36, 1161-1164.	4.9	10
63	Alternation of Metalâ€Bridged Metallacycle Skeletons: From Ruthenapentalyne to Ruthenapentalene and Ruthenaindene Derivative. Chinese Journal of Chemistry, 2018, 36, 1156-1160.	4.9	12
64	Photo-excitable hybrid nanocomposites for image-guided photo/TRAIL synergistic cancer therapy. Biomaterials, 2018, 176, 60-70.	11.4	37
65	Reactions of Cyclic Osmacarbyne with Coinage Metal Complexes. Organometallics, 2018, 37, 1788-1794.	2.3	19
66	Constraint of a ruthenium-carbon triple bond to a five-membered ring. Science Advances, 2018, 4, eaat0336.	10.3	38
67	Metallapentalenofuran: Shifting Metallafuran Rings Promoted by Substituent Effects. Chemistry - A European Journal, 2018, 24, 14531-14538.	3.3	12
68	Cylindrical NIR-Responsive Metallopolymer Containing M $\tilde{\text{A}}$ $\tilde{\text{P}}$ bius Metalla-aromatics. ACS Macro Letters, 2018, 7, 1034-1038.	4.8	22
69	Carbolong Chemistry: A Story of Carbon Chain Ligands and Transition Metals. Accounts of Chemical Research, 2018, 51, 1691-1700.	15.6	132
70	History and Development. Chinese Journal of Organic Chemistry, 2018, 38, 11.	1.3	28
71	Reactions of Isocyanides with Metal Carbyne Complexes: Isolation and Characterization of Metallacyclopropenimine Intermediates. Journal of the American Chemical Society, 2017, 139, 1822-1825.	13.7	57
72	Synthesis and Characterization of Osmium Polycyclic Aromatic Complexes via Nucleophilic Reactions of Osmapentalyne. Chinese Journal of Chemistry, 2017, 35, 628-634.	4.9	16

#	Article	IF	CITATIONS
73	Synthesis, Characterization and Electrochemical Properties of 4,5â€Diazafluorenâ€9â€yl or Fluorenâ€9â€yl Terminated Homobimetallic Ruthenium and Osmium Allenylidene, Alkynylâ€Allenylidene Complexes. Chinese Journal of Chemistry, 2017, 35, 420-428.	4.9	10
74	Amphipathic metal-containing macromolecules with photothermal properties. Polymer Chemistry, 2017, 8, 3674-3678.	3.9	27
75	Synthesis and Characterization of a Metallacyclic Framework with Three Fused Fiveâ€membered Rings. Angewandte Chemie, 2017, 129, 9195-9199.	2.0	13
76	Metallapentalenofurans and Lactoneâ€Fused Metallapentalynes. Chemistry - A European Journal, 2017, 23, 6426-6431.	3.3	39
77	Synthesis of Imidazopyridinium-Fused Metallacycloallene via One-Pot Reaction of \hat{l} - $\langle sup \rangle$ -Alkynol-Coordinated Osmacycle with 2-Aminopyridine. Organometallics, 2017, 36, 4184-4190.	2.3	6
78	Switching of Charge Transport Pathways via Delocalization Changes in Single-Molecule Metallacycles Junctions. Journal of the American Chemical Society, 2017, 139, 14344-14347.	13.7	59
79	Multiyne chains chelating osmium via three metal-carbon $\ddot{I} f$ bonds. Nature Communications, 2017, 8, 1912.	12.8	51
80	Color-Tuning Strategy for Iridapolycycles $ [(N < \sup \hat{a} \le /\sup N)]r(C < \sup \hat{a} \le /\sup C)C PPh < \sup 3 < /\sup N < \sup N) r(C < \sup \hat{a} \le /\sup C)C PPh < \sup N < T < T < T < T < T < T < T < T < T <$	2.3	3
81	Synthesis and Characterization of a Metallacyclic Framework with Three Fused Fiveâ€membered Rings. Angewandte Chemie - International Edition, 2017, 56, 9067-9071.	13.8	45
82	Synthesis of Olefinic Carbolong Complexes. Chinese Journal of Organic Chemistry, 2017, 37, 1181.	1.3	15
83	Synthesis of Cyclic Vinylidene Complexes and Azavinylidene Complexes by Formal [4+2] Cyclization Reactions. Chemistry - A European Journal, 2016, 22, 5363-5375.	3.3	19
84	Synthesis of Fused Metallaaromatics via Intramolecular C–H Activation of Thiophenes. Organometallics, 2016, 35, 1497-1504.	2.3	31
85	CCCCC pentadentate chelates with planar MÃ \P bius aromaticity and unique properties. Science Advances, 2016, 2, e1601031.	10.3	74
86	Synthesis of aromatic ruthenabenzothiophenes via C–H activation of thiophenes. Dalton Transactions, 2016, 45, 913-917.	3.3	18
87	Halogenation of carbyne complexes: isolation of unsaturated metallaiodirenium ion and metallabromirenium ion. Chemical Science, 2016, 7, 1815-1818.	7.4	45
88	Metallafurans and their synthetic chemistry. Science Bulletin, 2016, 61, 430-442.	9.0	20
89	C–H Bond Functionalization of Benzoxazoles with Chromium(0) Fischer Carbene Complexes. Organometallics, 2016, 35, 1409-1414.	2.3	12
90	Reactions of Osmabenzene with Silver/Copper Acetylides: From Metallabenzene to Benzene. Chemistry - A European Journal, 2015, 21, 565-567.	3.3	24

#	Article	IF	CITATIONS
91	Fiveâ€Membered Cyclic Metal Carbyne: Synthesis of Osmapentalynes by the Reactions of Osmapentalene with Allene, Alkyne, and Alkene. Angewandte Chemie, 2015, 127, 7295-7298.	2.0	19
92	Ïfâ€Aromaticity in an Unsaturated Ring: Osmapentalene Derivatives Containing a Metallacyclopropene Unit. Angewandte Chemie, 2015, 127, 3145-3149.	2.0	44
93	Reactions of osmapyridinium with terminal alkynes. Organic Chemistry Frontiers, 2015, 2, 560-568.	4.5	12
94	Reactions of Osmium Hydrido Alkenylcarbyne with Allenoates: Insertion and $[3+2]$ Annulation. Organometallics, 2015, 34, 1742-1750.	2.3	17
95	Synthesis of Five-Membered Osmacycles with Osmium–Vinyl Bonds from Hydrido Alkenylcarbyne Complexes. Organometallics, 2015, 34, 340-347.	2.3	22
96	A simple and versatile approach to self-healing polymers and electrically conductive composites. RSC Advances, 2015, 5, 13261-13269.	3.6	17
97	Ïfâ€Aromaticity in an Unsaturated Ring: Osmapentalene Derivatives Containing a Metallacyclopropene Unit. Angewandte Chemie - International Edition, 2015, 54, 3102-3106.	13.8	119
98	An Unconventional Route to Monodisperse and Intimately Contacted Semiconducting Organic–Inorganic Nanocomposites. Angewandte Chemie - International Edition, 2015, 54, 4636-4640.	13.8	54
99	Corannulene derivatives with low LUMO levels and dense convex–concave packing for n-channel organic field-effect transistors. Chemical Communications, 2015, 51, 13768-13771.	4.1	55
100	Fiveâ€Membered Cyclic Metal Carbyne: Synthesis of Osmapentalynes by the Reactions of Osmapentalene with Allene, Alkyne, and Alkene. Angewandte Chemie - International Edition, 2015, 54, 7189-7192.	13.8	66
101	A general route to nanocrystal kebabs periodically assembled on stretched flexible polymer shish. Science Advances, 2015, 1, e1500025.	10.3	69
102	Stabilizing Two Classical Antiaromatic Frameworks: Demonstration of Photoacoustic Imaging and the Photothermal Effect in Metallaâ€aromatics. Angewandte Chemie - International Edition, 2015, 54, 6181-6185.	13.8	99
103	Synthesis of Aromatic Aza-metallapentalenes from Metallabenzene via Sequential Ring Contraction/Annulation. Scientific Reports, 2015, 5, 9584.	3.3	20
104	Sequential Construction Strategy for Rational Design of Luminescent Iridacycles. Organometallics, 2015, 34, 4229-4237.	2.3	7
105	Catalyst-free cross-coupling of N-tosylhydrazones with chromium(0) Fischer carbene complexes: a new approach to diarylethanone. Organic Chemistry Frontiers, 2015, 2, 1450-1456.	4.5	21
106	Thiophene-fused bowl-shaped polycyclic aromatics with a dibenzo[a,g]corannulene core for organic field-effect transistors. Chemical Communications, 2015, 51, 1681-1684.	4.1	72
107	HRMS studies on the fragmentation pathways of metallapentalyne. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 136, 906-910.	3.9	3
108	Synthesis, Structure, and Reactivity of an Osmacyclopentene Complex. Organometallics, 2014, 33, 5301-5307.	2.3	19

#	Article	IF	CITATIONS
109	Interconversion between Ruthenacyclohexadiene and Ruthenabenzene: A Combined Experimental and Theoretical Study. Organometallics, 2014, 33, 5606-5609.	2.3	16
110	Planar MÃ \P bius aromatic pentalenes incorporating 16 and 18 valence electron osmiums. Nature Communications, 2014, 5, 3265.	12.8	169
111	The Chemistry of Aromatic Osmacycles. Accounts of Chemical Research, 2014, 47, 341-354.	15.6	153
112	A Metalâ€Bridged Tricyclic Aromatic System: Synthesis of Osmium Polycyclic Aromatic Complexes. Angewandte Chemie - International Edition, 2014, 53, 6232-6236.	13.8	77
113	Star-like polymer click-functionalized with small capping molecules: an initial investigation into properties and improving solubility in liquid crystals. RSC Advances, 2014, 4, 50212-50219.	3.6	3
114	1,2-Migration in the reactions of ruthenium vinyl carbene with propargyl alcohols. Organic Chemistry Frontiers, 2014, 1, 1077-1082.	4.5	10
115	Unimolecular micelles composed of inner coil-like blocks and outer rod-like blocks crafted by combination of living polymerization with click chemistry. Polymer Chemistry, 2014, 5, 2747-2755.	3.9	34
116	Theoretical Study on the Stability and Aromaticity of Metallasilapentalynes. Organometallics, 2014, 33, 1845-1850.	2.3	39
117	<i>m</i> à€Metallaphenol: Synthesis and Reactivity Studies. Chemistry - A European Journal, 2014, 20, 4363-4372.	3.3	33
118	Reactivity study of a hydroxyl coordinated osmium vinyl complex OsCl2(PPh3)2[CH=C(PPh3)CHPh(OH)]. Science China Chemistry, 2013, 56, 1105-1111.	8.2	9
119	Mechanoresponsive Healable Metallosupramolecular Polymers. Macromolecules, 2013, 46, 8649-8656.	4.8	156
120	From Osmium Hydrido Vinylidene to Osmacycles: The Key Role of Osmabutadiene Intermediates. Chemistry - an Asian Journal, 2013, 8, 269-275.	3.3	27
121	Mechanistic Study of Indolizine Heterocycle Formation by Ruthenium(II)-Assisted Three-Component Cross-Coupling / Cyclization. Organometallics, 2013, 32, 3738-3743.	2.3	23
122	Off/On Fluorescent Chemosensors for Organotin Halides Based on Binuclear Ruthenium Complexes. Angewandte Chemie - International Edition, 2013, 52, 5599-5603.	13.8	12
123	Stabilization of anti-aromatic and strained five-membered rings with a transition metal. Nature Chemistry, 2013, 5, 698-703.	13.6	244
124	Conversion of a Hydrido–Butenylcarbyne Complex to η2-Allene-Coordinated Complexes and Metallabenzenes. Organometallics, 2013, 32, 3993-4001.	2.3	37
125	Synthesis of Fiveâ€Membered Osmacycloallenes and Conversion into Sixâ€Membered Osmacycloallenes. Angewandte Chemie - International Edition, 2013, 52, 13361-13364.	13.8	22
126	Key Intermediates of Iodineâ€Mediated Electrophilic Cyclization: Isolation and Characterization in an Osmabenzene System. Angewandte Chemie - International Edition, 2013, 52, 9251-9255.	13.8	56

#	Article	IF	Citations
127	<i>cine</i> â€Substitution Reactions of Metallabenzenes: An Experimental and Computational Study. Chemistry - A European Journal, 2013, 19, 10982-10991.	3.3	42
128	Synthesis of Ruthena-polycyclic Complexes by Ruthenium-Vinylcarbene Complex. Acta Chimica Sinica, 2013, 71, 1373.	1.4	4
129	Double Stabilization of Highly Strained Six-Membered Rings by Phosphonium and Transition Metal. Chinese Journal of Organic Chemistry, 2013, 33, 657.	1.3	28
130	Synthesis of Osmapyridiniums by [4+2] Cycloaddition Reaction between Osmium Alkenylcarbyne and Nitriles. Chinese Journal of Chemistry, 2012, 30, 2158-2168.	4.9	25
131	Synthesis and Characterization of a Metallapyridyne Complex. Angewandte Chemie - International Edition, 2012, 51, 9838-9841.	13.8	71
132	Conversions of Osmabenzyne and Isoosmabenzene. Chemistry - A European Journal, 2012, 18, 11597-11603.	3.3	42
133	Preparation of Si–C–N–Fe magnetic ceramic derived from iron-modified polysilazane. Ceramics International, 2012, 38, 6815-6822.	4.8	40
134	Structure and properties of polyamidoamine/polyacrylonitrile composite nanofiltration membrane prepared by interfacial polymerization. Separation and Purification Technology, 2012, 96, 229-236.	7.9	55
135	Multi-responsive self-healing metallo-supramolecular gels based on "click―ligand. Journal of Materials Chemistry, 2012, 22, 11515.	6.7	130
136	Interconversion of Metallabenzenes and Cyclic η ² â€Alleneâ€Coordinated Complexes. Chemistry - an Asian Journal, 2012, 7, 1915-1924.	3.3	23
137	Synthesis and ceramic conversion of a novel processible polyboronsilazane precursor to SiBCN ceramic. Ceramics International, 2012, 38, 4635-4643.	4.8	35
138	In situ synthesis and microstructure characterization of TiC–TiB2–SiC ultrafine composites from hybrid precursor. Materials Chemistry and Physics, 2012, 133, 946-953.	4.0	15
139	Preparation, cross-linking and ceramization of AHPCS/Cp2ZrCl2 hybrid precursors for SiC/ZrC/C composites. Journal of the European Ceramic Society, 2012, 32, 1291-1298.	5.7	48
140	Synthesis and Characterization of SiC(Ti) Ceramics Derived from a Hybrid Precursor of Titanium-Containing Polycarbosilane. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 412-420.	3.7	24
141	Preparation of a liquid boronâ€modified polycarbosilane and its ceramic conversion to dense SiC ceramics. Polymers for Advanced Technologies, 2011, 22, 2409-2414.	3.2	16
142	Synthesis and characterization of a propargylâ€substituted polycarbosilane with high ceramic yield. Journal of Applied Polymer Science, 2011, 121, 3400-3406.	2.6	14
143	Synthesis and polymerâ€toâ€ceramic conversion of tailorable copolysilazanes. Journal of Applied Polymer Science, 2011, 122, 1286-1292.	2.6	11
144	Stable Isoâ€osmabenzenes from a Formal [3+3] Cycloaddition Reaction of Metal Vinylidene with Alkynols. Angewandte Chemie - International Edition, 2011, 50, 1354-1358.	13.8	58

#	Article	IF	CITATIONS
145	pHâ∈Switchable Inversion of the Metalâ∈Centered Chirality of Metallabenzenes: Opposite Stereodynamics in Reactions of Ruthenabenzene with <scp>L</scp> â€and <scp>D</scp> â€Cysteine. Chemistry - A European Journal, 2011, 17, 2420-2427.	3.3	78
146	New Highly Stable Metallabenzenes via Nucleophilic Aromatic Substitution Reaction. Chemistry - A European Journal, 2011, 17, 4223-4231.	3.3	59
147	Modification of a liquid polycarbosilane with 9-BBN as a high-ceramic-yield precursor for SiC. Reactive and Functional Polymers, 2010, 70, 334-339.	4.1	17
148	Synthesis and characterization of stable osmafuran starting from HC≡CCH(OH)C≡CH and OsHCl(CO)(PPh3)3. Science China Chemistry, 2010, 53, 1978-1981.	8.2	11
149	Preparation of a hyperbranched polycarbosilane precursor to SiC ceramics following an efficient room-temperature cross-linking process. Journal of Materials Science, 2010, 45, 6151-6158.	3.7	27
150	Unusual η ² â€Allene Osmacycle with Apoptotic Properties. ChemBioChem, 2010, 11, 1607-1613.	2.6	9
151	Nucleophilic Aromatic Addition Reactions of the Metallabenzenes and Metallapyridinium: Attacking Aromatic Metallacycles with Bis(diphenylphosphino)methane to Form Metallacyclohexadienes and Cyclic Î-⟨sup⟩2⟨/sup⟩â€Alleneâ€Coordinated Complexes. Chemistry - A European Journal, 2010, 16, 6999-7007.	3.3	42
152	Synthesis, Characterization, and Electrochemical Properties of Bisosmabenzenes Bridged by Diisocyanides. Organometallics, 2010, 29, 2916-2925.	2.3	46
153	Câ^'H Bond Activation and Subsequent C(sp2)â^'C(sp3) Bond Formation: Coupling of Bromomethyl and Triphenylphosphine in an Iridium Complex. Organometallics, 2010, 29, 2904-2910.	2.3	17
154	Synthesis, Characterization and Electrochemical Properties of Stable Osmabenzenes Containing PPh ₃ Substituents. Chemistry - A European Journal, 2009, 15, 3546-3559.	3.3	60
155	Osmabenzenes from Osmacycles Containing an Î- ² â€Coordinated Olefin. Chemistry - A European Journal, 2009, 15, 6258-6266.	3.3	48
156	Osmapyridine and Osmapyridinium from a Formal [4+2] Cycloaddition Reaction. Angewandte Chemie - International Edition, 2009, 48, 5430-5434.	13.8	92
157	Selective Synthesis of Osmanaphthalene and Osmanaphthalyne by Intramolecular CH Activation. Angewandte Chemie - International Edition, 2009, 48, 5461-5464.	13.8	106
158	Annulation of Metallabenzenes: From Osmabenzene to Osmabenzothiazole to Osmabenzoxazole. Angewandte Chemie - International Edition, 2009, 48, 6453-6456.	13.8	62
159	Synthesis and properties of liquid polycarbosilanes with hyperbranched structures. Journal of Applied Polymer Science, 2009, 113, 1611-1618.	2.6	35
160	Method for preparing polyaluminocarbosilane. Journal of Applied Polymer Science, 2009, 113, 3725-3731.	2.6	8
161	Photocatalytic activity of size and phase selective TiO2 nanoparticles prepared by the membrane processing. Separation and Purification Technology, 2009, 68, 153-158.	7.9	3
162	Effect of curing and pyrolysis processing on the ceramic yield of a highly branched polycarbosilane. Journal of Materials Science, 2009, 44, 721-725.	3.7	28

#	Article	IF	Citations
163	Size separation of Fe2O3 nanoparticles via membrane processing. Separation and Purification Technology, 2009, 66, 148-152.	7.9	14
164	Synthesis of Coordinated $\hat{l} \cdot (\sup 2 < \sup -\hat{l} \pm \hat{l}^2 \cdot Unsaturated Ketone Osmacycles from an Osmium-Coordinated Alkyne Alcohol Complex. Organometallics, 2009, 28, 1101-1111.$	2.3	35
165	Nine-Membered Osmacycles Derived from Metathesis Reactions between Alkynes and an Osmafuran. Organometallics, 2009, 28, 1524-1533.	2.3	46
166	Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics. Journal of Materials Science, 2008, 43, 2806-2811.	3.7	83
167	Control of structure formation of polycarbosilane synthesized from polydimethylsilane by Kumada rearrangement. Journal of Applied Polymer Science, 2008, 108, 3114-3121.	2.6	21
168	Effect of the polycarbosilane structure on its final ceramic yield. Journal of the European Ceramic Society, 2008, 28, 887-891.	5.7	99
169	Application of nanofiltration process in 5′-GMP production. Desalination, 2008, 225, 322-328.	8.2	2
170	Synthesis, Characterization, and Pyrolytic Conversion of a Novel Liquid Polycarbosilane. Journal of the American Ceramic Society, 2008, 91, 3298-3302.	3.8	69
171	Synthesis and Characterization of a Novel Dialdehyde and Cyclic Anhydride. Journal of Organic Chemistry, 2008, 73, 2883-2885.	3.2	30
172	Synthesis and Characterization of an Air-Stable p-Osmaphenol. Organometallics, 2008, 27, 309-311.	2.3	35
173	Formation of Four Conjugated Osmacyclic Species in a One-Pot Reaction. Organometallics, 2008, 27, 2584-2589.	2.3	64
174	Synthesis and Characterization of Stable Ruthenabenzenes Starting from HCâ [®] CCH(OH)Câ [®] CH. Organometallics, 2007, 26, 2705-2713.	2.3	84
175	Synthesis and characterization of a bimetallic iridium complex with a ten sp2-carbon chain bridge. Dalton Transactions, 2007, , 4122.	3.3	11
176	Synthesis and Characterization of Stable Ruthenabenzenes. Angewandte Chemie - International Edition, 2006, 45, 2920-2923.	13.8	95
177	Synthesis and Characterization of Trimetallic Ruthenium and Bimetallic Osmium Complexes with Metalâ°Vinyl Linkages. Organometallics, 2005, 24, 562-569.	2.3	54
178	Progress in the synthesis and reactivity studies of metallabenzenes. Science Bulletin, 2004, 49, 1543-1553.	1.7	18
179	Osmabenzenes from the Reactions of HC≡CCH(OH)C≡CH with OsX2(PPh3)3 (X = Cl, Br). Journal of the American Chemical Society, 2004, 126, 6862-6863.	13.7	129
180	Synthesis of [TpRu(CO)(PPh3)]2(ν-CHĩCHî—,CHĩCHî—,CHî—,CHĩCHî—,CHĩCH) from Wittig reaction Organometallic Chemistry, 2003, 683, 331-336.	ns. Journal	of ₂₄

#	Article	IF	CITATIONS
181	Synthesis and Characterization of Bimetallic Ruthenium Complexes with (CH)6and Related Bridges. Organometallics, 2003, 22, 737-743.	2.3	69
182	A Triple-Decker Complex with a Central Metallabenzene. Angewandte Chemie, 2002, 114, 1659-1661.	2.0	14
183	A Triple-Decker Complex with a Central Metallabenzene. Angewandte Chemie - International Edition, 2002, 41, 1589-1591.	13.8	34
184	Reactions of RuHCl(CO)(PPh3)3 with 1-alkynols. Preparation and reactivity of hydroxyvinyl complexes. Journal of Organometallic Chemistry, 1997, 538, 31-40.	1.8	15
185	Boosting the performance and stability of inverted perovskite solar cells by using a carbolong derivative to modulate the cathode interface. Materials Chemistry Frontiers, 0, , .	5. 9	5