Cristiano Chiamulera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/36825/publications.pdf

Version: 2024-02-01

113 papers 3,976 citations

172457 29 h-index 60 g-index

117 all docs

117 docs citations

117 times ranked

4259 citing authors

#	Article	IF	Citations
1	Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nature Neuroscience, 2001, 4, 873-874.	14.8	517
2	Common Neural Substrates for the Addictive Properties of Nicotine and Cocaine. Science, 1997, 275, 83-86.	12.6	376
3	Removing Obstacles in Neuroscience Drug Discovery: The Future Path for Animal Models. Neuropsychopharmacology, 2009, 34, 74-89.	5.4	301
4	Nicotinic Acetylcholine Receptors in the Mesolimbic Pathway: Primary Role of Ventral Tegmental Area $\hat{l}\pm6\hat{l}^22^*$ Receptors in Mediating Systemic Nicotine Effects on Dopamine Release, Locomotion, and Reinforcement. Journal of Neuroscience, 2010, 30, 5311-5325.	3 . 6	208
5	The Anterior Insular Cortexâ†'Central Amygdala Glutamatergic Pathway Is Critical to Relapse after Contingency Management. Neuron, 2017, 96, 414-427.e8.	8.1	136
6	Post-retrieval extinction as reconsolidation interference: methodological issues or boundary conditions? Psychopharmacology, 2013, 226, 631-647.	3.1	121
7	Cue reactivity in nicotine and tobacco dependence: a "multiple-action―model of nicotine as a primary reinforcement and as an enhancer of the effects of smoking-associated stimuli. Brain Research Reviews, 2005, 48, 74-97.	9.0	120
8	Nicotine reinstatement of nicotine self-administration after long-term extinction. Psychopharmacology, 1996, 127, 102-107.	3.1	116
9	Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC-derived dopaminergic neurons via AMPAR-driven BDNF and mTOR signaling. Molecular Psychiatry, 2018, 23, 812-823.	7.9	106
10	Telemedicine and Virtual Reality for Cognitive Rehabilitation: A Roadmap for the COVID-19 Pandemic. Frontiers in Neurology, 2020, 11, 926.	2.4	102
11	Effect of NMDA- and strychnine-insensitive glycine site antagonists on NMDA-mediated convulsions and learning. Psychopharmacology, 1990, 102, 551-552.	3.1	90
12	Activation of metabotropic receptors has a neuroprotective effect in a rodent model of focal ischaemia. European Journal of Pharmacology, 1992, 216, 335-336.	3.5	85
13	Upregulation of [3H]methyllycaconitine binding sites following continuous infusion of nicotine, without changes of α7 or α6 subunit mRNA: an autoradiography andin situhybridization study in rat brain. European Journal of Neuroscience, 2002, 16, 1633-1646.	2.6	81
14	The Reinforcing Properties of Nicotine are Associated with a Specific Patterning ofc-fosExpression in the Rat Brain. European Journal of Neuroscience, 1996, 8, 2247-2256.	2.6	74
15	Nicotine self-administration and withdrawal: modulation of anxiety in the social interaction test in rats. Psychopharmacology, 2001, 153, 315-320.	3.1	67
16	Tobacco Addiction and Smoking Status in Heroin Addicts under Methadone vs. Buprenorphine Therapy. International Journal of Environmental Research and Public Health, 2012, 9, 932-942.	2.6	56
17	Novel stem/progenitor cells with neuronal differentiation potential reside in the leptomeningeal niche. Journal of Cellular and Molecular Medicine, 2009, 13, 3195-3208.	3.6	54
18	Effects of the metabotropic glutamate receptor antagonist MCPG on spatial and context-specific learning. Neuropharmacology, 1996, 35, 1557-1565.	4.1	50

#	Article	IF	CITATIONS
19	Synthesis and pharmacological characterisation of 2,4-Dicarboxy-pyrroles as selective non-Competitive mGluR1 antagonists. Bioorganic and Medicinal Chemistry, 2003, 11, 171-183.	3.0	48
20	Nicotine reinforcement in rats with histories of cocaine self-administration. Psychopharmacology, 1995, 121, 282-283.	3.1	46
21	Extinction, applied after retrieval of auditory fear memory, selectively increases zinc-finger protein 268 and phosphorylated ribosomal protein S6 expression in prefrontal cortex and lateral amygdala. Neurobiology of Learning and Memory, 2014, 115, 78-85.	1.9	45
22	Increases in cholinergic neurotransmission measured by using choline-sensitive microelectrodes: Enhanced detection by hydrolysis of acetylcholine on recording sites?. Neurochemistry International, 2008, 52, 1343-1350.	3.8	43
23	Increased Protein Nitration in Mitochondrial Diseases: Evidence for Vessel Wall Involvement. Molecular and Cellular Proteomics, 2011, 10, M110.002964.	3.8	39
24	Qualitative and quantitative analysis of the progressive cerebral damage after middle cerebral artery occlusion in mice. Brain Research, 1993, 606, 251-258.	2.2	38
25	Correspondence. Neuroscience, 1997, 79, 1-5.	2.3	36
26	The expression of p75 neurotrophin receptor protects against the neurotoxicity of soluble oligomers of \hat{I}^2 -amyloid. Experimental Cell Research, 2005, 311, 126-134.	2.6	33
27	Sphingosine 1-Phosphate Receptor Modulator Fingolimod (FTY720) Attenuates Myocardial Fibrosis in Post-heterotopic Heart Transplantation. Frontiers in Pharmacology, 2017, 8, 645.	3.5	33
28	Cigarette Smoking Knowledge and Perceptions Among Students in Four Italian Medical Schools. Nicotine and Tobacco Research, 2012, 14, 1065-1072.	2.6	32
29	Resumption of ethanol seeking behaviour in rats. Behavioural Pharmacology, 1995, 6, 32???39.	1.7	31
30	The modulation of BDNF expression and signalling dissects the antidepressant from the reinforcing properties of ketamine: Effects of single infusion vs. chronic self-administration in rats. Pharmacological Research, 2016, 104, 22-30.	7.1	29
31	(2R,6R)-Hydroxynorketamine promotes dendrite outgrowth in human inducible pluripotent stem cell-derived neurons through AMPA receptor with timing and exposure compatible with ketamine infusion pharmacokinetics in humans. NeuroReport, 2018, 29, 1425-1430.	1.2	29
32	Pharmacological and non-pharmacological factors that regulate the acquisition of ketamine self-administration in rats. Psychopharmacology, 2015, 232, 4505-4514.	3.1	27
33	Methoxetamine, a novel psychoactive substance with serious adverse pharmacological effects: a review of case reports and preclinical findings. Behavioural Pharmacology, 2016, 27, 489-496.	1.7	26
34	Ketamine Self-Administration Elevates $\hat{l}\pm CaMKII$ Autophosphorylation in Mood and Reward-Related Brain Regions in Rats. Molecular Neurobiology, 2018, 55, 5453-5461.	4.0	26
35	Domoic Acid Toxicity in Rats and Mice after Intracerebroventricular Administration: Comparison with Excitatory Amino Acid Agonists. Basic and Clinical Pharmacology and Toxicology, 1992, 70, 115-120.	0.0	25
36	Nicotine-seeking reinstatement is reduced by inhibition of instrumental memory reconsolidation. Behavioural Pharmacology, 2014, 25, 725-731.	1.7	24

#	Article	IF	CITATIONS
37	Ketamine Self-Administration Reduces the Homeostasis of the Glutamate Synapse in the Rat Brain. Molecular Neurobiology, 2017, 54, 7186-7193.	4.0	24
38	Glutamate receptors and metaplasticity in addiction. Current Opinion in Pharmacology, 2021, 56, 39-45.	3.5	24
39	Musculoskeletal Adverse Drug Reactions: A Review of Literature and Data from ADR Spontaneous Reporting Databases. Current Drug Safety, 2007, 2, 47-63.	0.6	23
40	Nicotine increases the expression of neurotrophin receptor tyrosine kinase receptor A in basal forebrain cholinergic neurons. Neuroscience, 2010, 166, 580-589.	2.3	23
41	Propranolol transiently inhibits reinstatement of nicotine-seeking behaviour in rats. Journal of Psychopharmacology, 2010, 24, 389-395.	4.0	23
42	Acute ketamine-induced neuroplasticity. NeuroReport, 2013, 24, 388-393.	1.2	23
43	The ketamine-like compound methoxetamine substitutes for ketamine in the self-administration paradigm and enhances mesolimbic dopaminergic transmission. Psychopharmacology, 2016, 233, 2241-2251.	3.1	22
44	Methoxetamine affects brain processing involved in emotional response in rats. British Journal of Pharmacology, 2017, 174, 3333-3345.	5.4	21
45	Psychedelics and reconsolidation of traumatic and appetitive maladaptive memories: focus on cannabinoids and ketamine. Psychopharmacology, 2018, 235, 433-445.	3.1	21
46	Molecular mechanisms of the positive reinforcing effect of nicotine. Behavioural Pharmacology, 1999, 10, 587-596.	1.7	19
47	The ketamine analogue methoxetamine generalizes to ketamine discriminative stimulus in rats. Behavioural Pharmacology, 2016, 27, 204-210.	1.7	19
48	The motor way: Clinical implications of understanding and shaping actions with the motor system in autism and drug addiction. Cognitive, Affective and Behavioral Neuroscience, 2016, 16, 191-206.	2.0	17
49	Virtual Reality for Neuroarchitecture: Cue Reactivity in Built Spaces. Frontiers in Psychology, 2017, 8, 185.	2.1	17
50	Chronic nicotine treatment decreases neurofilament immunoreactivity in the rat ventral tegmental area. European Journal of Pharmacology, 2000, 393, 249-253.	3.5	15
51	Ketamine increases the expression of GluR1 and GluR2 î±-amino-3-hydroxy-5-methy-4-isoxazole propionate receptor subunits in human dopaminergic neurons differentiated from induced pluripotent stem cells. NeuroReport, 2019, 30, 207-212.	1.2	15
52	Metaplastic Effects of Ketamine and MK-801 on Glutamate Receptors Expression in Rat Medial Prefrontal Cortex and Hippocampus. Molecular Neurobiology, 2021, 58, 3443-3456.	4.0	15
53	Acute effect of <scp>S</scp> nus on physical performance and perceived cognitive load on amateur footballers. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, e423-31.	2.9	14
54	The effects of oral smokeless tobacco administration on endurance performance. Journal of Sport and Health Science, 2018, 7, 465-472.	6.5	14

#	Article	IF	CITATIONS
55	The metaplastic effects of ketamine on sucrose renewal and contextual memory reconsolidation in rats. Behavioural Brain Research, 2020, 379, 112347.	2.2	14
56	Chronic nicotine treatment changes the axonal distribution of $68\hat{a} \in fkDa$ neurofilaments in the rat ventral tegmental area. European Journal of Neuroscience, 2002, 16, 877-882.	2.6	13
57	Expression of smallâ€conductance calciumâ€activated potassium channels (SK3) in skeletal muscle: regulation by muscle activity. Journal of Physiology, 2008, 586, 4763-4774.	2.9	13
58	Choline up-regulates BDNF and down-regulates TrkB neurotrophin receptor in rat cortical cell culture. NeuroReport, 2009, 20, 828-832.	1,2	13
59	Acetylcholinesterase inhibitors partially generalize to nicotine discriminative stimulus effect in rats. Behavioural Pharmacology, 2011, 22, 1-6.	1.7	13
60	Metabotropic glutamate receptor 5 as a potential target for smoking cessation. Psychopharmacology, 2017, 234, 1357-1370.	3.1	13
61	Where Dopaminergic and Cholinergic Systems Interact: A Gateway for Tuning Neurodegenerative Disorders. Frontiers in Behavioral Neuroscience, 2021, 15, 661973.	2.0	13
62	Sub-chronic nicotine-induced changes in regional cerebral blood volume and transversal relaxation time patterns in the rat: a magnetic resonance study. Neuroscience Letters, 2005, 377, 195-199.	2.1	12
63	Drug discovery for the treatment of substance use disorders: novel targets, repurposing, and the need for new paradigms. Current Opinion in Pharmacology, 2017, 35, 120-124.	3.5	12
64	A Preliminary Investigation on Smokeless Tobacco Use and Its Cognitive Effects Among Athletes. Frontiers in Pharmacology, 2018, 9, 216.	3.5	12
65	The metaplastic effects of NMDA receptors blockade on reactivation of instrumental memories in rats. Neurobiology of Learning and Memory, 2018, 154, 87-96.	1.9	11
66	Exercise performance increase in smokeless tobaccoâ€user athletes after overnight nicotine abstinence. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 430-439.	2.9	11
67	Remote clinical trials: A timely opportunity for a virtual reality approach and its potential application in neurology. British Journal of Clinical Pharmacology, 2021, 87, 3639-3642.	2.4	11
68	Knowledge about Health Effects of Cigarette Smoking and Quitting among Italian University Students: The Importance of Teaching Nicotine Dependence and Treatment in the Medical Curriculum. BioMed Research International, 2014, 2014, 1-9.	1.9	10
69	The Effect of Postretrieval Extinction of Nicotine Pavlovian Memories in Rats Trained to Self-Administer Nicotine. Nicotine and Tobacco Research, 2014, 16, 1599-1605.	2.6	10
70	Continuous Infusion of Flumazenil in the Management of Benzodiazepines Detoxification. Frontiers in Psychiatry, 2021, 12, 646038.	2.6	10
71	SK3 Trafficking in Hippocampal Cells: The Role of Different Molecular Domains. Bioscience Reports, 2006, 26, 399-412.	2.4	9
72	Nicotinic Receptors and the Treatment of Attentional and Cognitive Deficits in Neuropsychiatric Disorders: Focus on the & Disorders: Focus on the Business	1.1	9

#	Article	IF	CITATIONS
73	Nicotine-induced phosphorylation of phosphorylated cyclic AMP response element-binding protein (pCREB) in hippocampal neurons is potentiated by agrin. Neuroscience Letters, 2008, 442, 234-238.	2.1	9
74	Reconsolidation of Maladaptive Memories as a Therapeutic Target: Pre-Clinical Data and Clinical Approaches. Frontiers in Psychiatry, 2014, 5, 107.	2.6	9
75	Smoking-related cue reactivity in a virtual reality setting: association between craving and EEG measures. Psychopharmacology, 2021, 238, 1363-1371.	3.1	9
76	A virtual reality study on postretrieval extinction of smoking memory reconsolidation in smokers. Journal of Substance Abuse Treatment, 2021, 125, 108317.	2.8	9
77	Protocols for instrumental memory reconsolidation in rodents: A methodological review. Journal of Neuroscience Methods, 2020, 342, 108766.	2.5	9
78	Neural substrate of nicotine addiction as defined by functional brain maps of gene expression. Journal of Physiology (Paris), 1998, 92, 225-228.	2.1	8
79	Reconsolidation of sucrose instrumental memory in rats: The role of retrieval context. Brain Research, 2019, 1714, 193-201.	2.2	8
80	p75 neurotrophin receptor distribution and transport in cultured neurons. Neuroscience Research, 2008, 62, 32-42.	1.9	7
81	Opportunities, threats and limitations of neuroscience data in forensic psychiatric evaluation. Current Opinion in Psychiatry, 2013, 26, 468-473.	6.3	7
82	Revealing Dissociable Attention Biases in Chronic Smokers Through an Individual-Differences Approach. Scientific Reports, 2019, 9, 4930.	3.3	7
83	GABAergic neurons expressing p75 in rat substantia innominata and nucleus basalis. Molecular and Cellular Neurosciences, 2011, 46, 625-632.	2.2	6
84	Which Future for Neuroscience in Forensic Psychiatry: Theoretical Hurdles and Empirical Chances. Frontiers in Psychiatry, 2013, 4, 74.	2.6	5
85	Ketamine nano-delivery based on poly-lactic-co-glycolic acid (PLGA) nanoparticles. Applied Nanoscience (Switzerland), 2018, 8, 655-663.	3.1	5
86	Ketamine effects on mammalian target of rapamycin signaling in the mouse limbic system depend on functional dopamine D3 receptors. NeuroReport, 2018, 29, 615-620.	1.2	5
87	The importance of nicotine use among winter sports athletes especially in skiers. Journal of Science and Medicine in Sport, 2019, 22, 1072.	1.3	5
88	Cytokine-, Neurotrophin-, and Motor Rehabilitation-Induced Plasticity in Parkinson's Disease. Neural Plasticity, 2020, 2020, 1-15.	2.2	5
89	Environmental Enrichment Induces Meningeal Niche Remodeling through TrkB-Mediated Signaling. International Journal of Molecular Sciences, 2021, 22, 10657.	4.1	5
90	Smokeless tobacco use in sports: †legal doping'?. Addiction, 2007, 102, 1847-1848.	3.3	4

#	Article	IF	Citations
91	The Effects of Nicotine on Cortical Excitability After Exercise. Journal of Clinical Psychopharmacology, 2020, 40, 495-498.	1.4	4
92	Brief Environmental Enrichment exposure enhances contextual-induced sucrose-seeking with and without memory reactivation in rats. Behavioural Brain Research, 2022, 416, 113556.	2.2	4
93	Research is needed on the use of cognitive enhancer drugs in sport. Journal of Science and Medicine in Sport, 2011, 14, 2-3.	1.3	3
94	Evidence for caspase-dependent programmed cell death along with repair processes in affected skeletal muscle fibres in patients with mitochondrial disorders. Clinical Science, 2016, 130, 167-181.	4.3	3
95	A descriptive study of exercise dependence: a short report among Italian and Japanese runners. Journal of Addictive Diseases, 2020, 39, 133-137.	1.3	3
96	Drinking reduction and reversibility of neuroadaptation in alcoholism. Journal of Psychopharmacology, 2014, 28, 810-812.	4.0	2
97	Hippocampal gamma oscillations by sucrose instrumental memory retrieval in rats across sleep/wake cycle. Neuroscience Letters, 2020, 736, 135255.	2.1	2
98	Smokers "Context Reactivity―in Virtual Domestic Environments. European Addiction Research, 2021, 27, 439-446.	2.4	2
99	What role does dopamine really play in tobacco addiction?. Addiction, 2018, 113, 1379-1380.	3.3	1
100	The interaction between Environmental Enrichment and fluoxetine in inhibiting sucrose-seeking renewal in mice depend on socialÂliving condition. Psychopharmacology, 2022, 239, 2351-2361.	3.1	1
101	An in vivo study suggesting the existence of different subtypes of quisqualate receptors. European Journal of Pharmacology, 1990, 183, 956.	3.5	0
102	New anxiolitics in development. Pharmacological Research, 1992, 26, 192.	7.1	0
103	Contribution of mGluR1 and mGluR5 to addiction to psycho stimulants. European Neuropsychopharmacology, 2002, 12, 156.	0.7	O
104	A8 CONTEXT-DEPENDENT ACTION OF NICOTINE ON LEARNING: OPPOSITE EFFECTS IN THE OBJECT RECOGNITION TASK IN MICE. Behavioural Pharmacology, 2005, 16, S25-S26.	1.7	0
105	G.P.3.11 Increased protein nitration in mitochondrial diseases: Evidence for vessel wall involvement. Neuromuscular Disorders, 2009, 19, 564-565.	0.6	0
106	A New Chapter in the History of SRNT: The Formation of the European Chapter of SRNT (SRNT-E)A Letter from the Presidents of SRNT and SRNT Europe. Nicotine and Tobacco Research, 2010, 12, 1181-1182.	2.6	0
107	E.17 - WEEKLY KETAMINE SELF-ADMINISTRATION IN RATS AS A MODEL OF INTERMITTENT KETAMINE USE. Behavioural Pharmacology, 2013, 24, e46.	1.7	0
108	S.24.01 mTOR controls structural plasticity of dopaminergic neurons: implication in the actions of ketamine. European Neuropsychopharmacology, 2015, 25, S145-S146.	0.7	0

#	Article	IF	CITATIONS
109	P.1.007 Ketamine-induced plasticity in mouse-primary and human-iPSC-derived dopaminergic neurons involves D3R and mTOR pathway. European Neuropsychopharmacology, 2016, 26, S8-S9.	0.7	O
110	12. Relapse to Methamphetamine Seeking After Choice-Based Voluntary Abstinence (Contingency) Tj ETQq0 0 0 S5.	rgBT /Ov 1.3	erlock 10 Tf 50 0
111	Smoker and smokeless tobacco user athletes: dual users?. QJM - Monthly Journal of the Association of Physicians, 2020, , .	0.5	0
112	Effects of nicotine on microvascular responsiveness after nicotine satiety versus overnight nicotine abstinence. Vascular Medicine, 2020, 25, 223-225.	1.5	0
113	Le nuove frontiere dell'intervento integrato farmacologico e psicosociale per il trattamento dei disturbi da uso di sostanze. Rivista Sperimentale Di Freniatria, 2016, , 103-125.	0.1	O