Vasanthi Jayaraman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3682090/publications.pdf

Version: 2024-02-01

VASANTHI LAVADAMAN

#	Article	IF	CITATIONS
1	Single molecule FRET methodology for investigating glutamate receptors. Methods in Enzymology, 2021, 652, 193-212.	1.0	3
2	α2δ-1 switches the phenotype of synaptic AMPA receptors by physically disrupting heteromeric subunit assembly. Cell Reports, 2021, 36, 109396.	6.4	19
3	Structural Arrangement Produced by Concanavalin A Binding to Homomeric GluK2 Receptors. Membranes, 2021, 11, 613.	3.0	1
4	A de novo GRIN1 Variant Associated With Myoclonus and Developmental Delay: From Molecular Mechanism to Rescue Pharmacology. Frontiers in Genetics, 2021, 12, 694312.	2.3	6
5	Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacological Reviews, 2021, 73, 1469-1658.	16.0	237
6	Delta glutamate receptors are functional glycine- and á´serine–gated cation channels in situ. Science Advances, 2021, 7, eabk2200.	10.3	17
7	The structural arrangement and dynamics of the heteromeric GluK2/GluK5 kainate receptor as determined by smFRET. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183001.	2.6	11
8	Mechanism of modulation of AMPA receptors by TARP- \hat{I}^3 8. Journal of General Physiology, 2020, 152, .	1.9	25
9	Activity Dependent Inhibition of AMPA Receptors by Zn ²⁺ . Journal of Neuroscience, 2020, 40, 8629-8636.	3.6	12
10	Structural Dynamics of Glutamate Signaling Systems by smFRET. Biophysical Journal, 2020, 119, 1929-1936.	0.5	6
11	Allosteric Changes in the NMDA Receptor Associated with Calcium-Dependent Inactivation. Biophysical Journal, 2020, 119, 2349-2359.	0.5	6
12	Conformational spread and dynamics in allostery of NMDA receptors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3839-3847.	7.1	25
13	Biophysics of Membrane Protein Signaling. Biophysical Journal, 2020, 118, E1.	0.5	1
14	Single-Molecule FRET Methods to Study Glutamate Receptors. Methods in Molecular Biology, 2019, 1941, 3-16.	0.9	9
15	The structural arrangement at intersubunit interfaces in homomeric kainate receptors. Scientific Reports, 2019, 9, 6969.	3.3	10
16	Dynamics of Membrane-Bound G12V-KRAS from Simulations and Single-Molecule FRET in Native Nanodiscs. Biophysical Journal, 2019, 116, 179-183.	0.5	56
17	Mapping the Conformational Landscape of Glutamate Receptors Using Single Molecule FRET. Trends in Neurosciences, 2019, 42, 128-139.	8.6	13
18	Phosphorylation Induces Conformational Rigidity at the C-Terminal Domain of AMPA Receptors. Journal of Physical Chemistry B, 2019, 123, 130-137.	2.6	4

VASANTHI JAYARAMAN

#	Article	IF	CITATIONS
19	The α2δ-1-NMDA Receptor Complex Is Critically Involved in Neuropathic Pain Development and Gabapentin Therapeutic Actions. Cell Reports, 2018, 22, 2307-2321.	6.4	191
20	Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2504-E2513.	7.1	22
21	The structure–energy landscape of NMDA receptor gating. Nature Chemical Biology, 2017, 13, 1232-1238.	8.0	41
22	Dual Effects of TARP $\hat{1}^3$ -2 on Glutamate Efficacy Can Account for AMPA Receptor Autoinactivation. Cell Reports, 2017, 20, 1123-1135.	6.4	28
23	High Precision FRET at Single-molecule Level for Biomolecule Structure Determination. Journal of Visualized Experiments, 2017, , .	0.3	15
24	Conformational Selection and Submillisecond Dynamics of the Ligand-binding Domain of the N-Methyl-d-aspartate Receptor. Journal of Biological Chemistry, 2016, 291, 16175-16185.	3.4	34
25	Acidâ€ s ensing ion channels are tuned to follow highâ€frequency stimuli. Journal of Physiology, 2016, 594, 2629-2645.	2.9	22
26	Stargazin Modulation of AMPA Receptors. Cell Reports, 2016, 17, 328-335.	6.4	44
27	Subtype-dependent N-Methyl-d-aspartate Receptor Amino-terminal Domain Conformations and Modulation by Spermine. Journal of Biological Chemistry, 2015, 290, 12812-12820.	3.4	36
28	A conserved structural mechanism of NMDA receptor inhibition: A comparison of ifenprodil and zinc. Journal of General Physiology, 2015, 146, 173-181.	1.9	23
29	Structural Dynamics of the Glycine-binding Domain of the N-Methyl-d-Aspartate Receptor. Journal of Biological Chemistry, 2015, 290, 797-804.	3.4	34
30	Conformational Transitions in the Glycine-Bound GluN1 NMDA Receptor LBD via Single-Molecule FRET. Biophysical Journal, 2015, 109, 66-75.	0.5	22
31	Stargazin promotes closure of the AMPA receptor ligand-binding domain. Journal of General Physiology, 2014, 144, 503-512.	1.9	43
32	Luminescence Resonance Energy Transfer to Study Conformational Changes in Membrane Proteins Expressed in Mammalian Cells. Journal of Visualized Experiments, 2014, , 51895.	0.3	8
33	Role of Conformational Dynamics in α-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid (AMPA) Receptor Partial Agonism. Journal of Biological Chemistry, 2012, 287, 43557-43564.	3.4	38
34	Structural landscape of isolated agonist-binding domains from single AMPA receptors. Nature Chemical Biology, 2011, 7, 168-173.	8.0	86
35	Role of dimer interface in activation and desensitization in AMPA receptors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9891-9896.	7.1	38
36	Subunit Arrangement in N-Methyl-d-aspartate (NMDA) Receptors. Journal of Biological Chemistry, 2010, 285, 15296-15301.	3.4	34

#	Article	IF	CITATIONS
37	LRET Investigations of Conformational Changes in the Ligand Binding Domain of a Functional AMPA Receptor. Biochemistry, 2008, 47, 10027-10032.	2.5	29