Douglas C Eaton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3682056/publications.pdf

Version: 2024-02-01

		47006	79698
178	6,430	47	73
papers	citations	h-index	g-index
100	100	100	4252
180	180	180	4352
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ion Channels: ENaC. , 2022, , 660-668.		O
2	ANP and ENaC contribute to spinal cord injury-induced polyuria in mice. Journal of Neurotrauma, 2022, , .	3.4	0
3	A novel role of BK potassium channel activity in preventing the development of kidney fibrosis. Kidney International, 2022, 101, 945-962.	5.2	8
4	Conformational ensemble of the TNF-derived peptide solnatide in solution. Computational and Structural Biotechnology Journal, 2022, 20, 2082-2090.	4.1	5
5	Dual Role of Hydrogen Peroxide as an Oxidant in Pneumococcal Pneumonia. Antioxidants and Redox Signaling, 2021, 34, 962-978.	5.4	13
6	Changing Demographics of NIDDK-Funded Physician-Scientists Doing Kidney Research. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1337-1344.	4.5	2
7	Dichotomous Role of Tumor Necrosis Factor in Pulmonary Barrier Function and Alveolar Fluid Clearance. Frontiers in Physiology, 2021, 12, 793251.	2.8	16
8	Regulating ENaC's gate. American Journal of Physiology - Cell Physiology, 2020, 318, C150-C162.	4.6	67
9	Myristoylated alanine-rich C kinase substrate-like protein-1 regulates epithelial sodium channel activity in renal distal convoluted tubule cells. American Journal of Physiology - Cell Physiology, 2020, 319, C589-C604.	4.6	10
10	Aldosterone Regulates Pendrin and Epithelial Sodium Channel Activity through Intercalated Cell Mineralocorticoid Receptor–Dependent and –Independent Mechanisms over a Wide Range in Serum Potassium. Journal of the American Society of Nephrology: JASN, 2020, 31, 483-499.	6.1	33
11	$14\text{-}3\text{-}3\hat{1}^3$, a novel regulator of the large-conductance Ca ²⁺ -activated K ⁺ channel. American Journal of Physiology - Renal Physiology, 2020, 319, F52-F62.	2.7	3
12	Stimulatory Role of SPAK Signaling in the Regulation of Large Conductance Ca2+-Activated Potassium (BK) Channel Protein Expression in Kidney. Frontiers in Physiology, 2020, 11, 638.	2.8	3
13	Epithelial Sodium Channels (ENaC). Physiology in Health and Disease, 2020, , 697-803.	0.3	1
14	Mal protein stabilizes luminal membrane PLC- \hat{l}^2 3 and negatively regulates ENaC in mouse cortical collecting duct cells. American Journal of Physiology - Renal Physiology, 2019, 317, F986-F995.	2.7	11
15	Loss of primary cilia increases polycystin-2 and TRPV4 and the appearance of a nonselective cation channel in the mouse cortical collecting duct. American Journal of Physiology - Renal Physiology, 2019, 317, F632-F637.	2.7	13
16	The TNF-derived TIP peptide activates the epithelial sodium channel and ameliorates experimental nephrotoxic serum nephritis. Kidney International, 2019, 95, 1359-1372.	5.2	11
17	Lack of urea transporters, UT-A1 and UT-A3, increases nitric oxide accumulation to dampen medullary sodium reabsorption through ENaC. American Journal of Physiology - Renal Physiology, 2019, 316, F539-F549.	2.7	2
18	ENaC Activity and Regulation in Renal Distal Convoluted Tubule Cells. FASEB Journal, 2019, 33, 824.26.	0.5	0

#	Article	IF	CITATIONS
19	Knockout of mitochondrial voltage-dependent anion channel type 3 increases reactive oxygen species (ROS) levels and alters renal sodium transport. Journal of Biological Chemistry, 2018, 293, 1666-1675.	3.4	23
20	Listeriolysin O Causes ENaC Dysfunction in Human Airway Epithelial Cells. Toxins, 2018, 10, 79.	3.4	5
21	Cyclosporin A Induces Hypertension via a Cholesterol―and ENaCâ€Dependent Mechanism. FASEB Journal, 2018, 32, 750.22.	0.5	O
22	ENaC activity is regulated by calpain-2 proteolysis of MARCKS proteins. American Journal of Physiology - Cell Physiology, 2017, 313, C42-C53.	4.6	24
23	Analysis of Aprotinin, a Protease Inhibitor, Action on the Trafficking of Epithelial Na+ Channels (ENaC) in Renal Epithelial Cells Using a Mathematical Model. Cellular Physiology and Biochemistry, 2017, 41, 1865-1880.	1.6	12
24	Alveolar nonselective channels are ASIC1a/ \hat{l} ±-ENaC channels and contribute to AFC. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L797-L811.	2.9	37
25	Current-direction/amplitude-dependent single channel gating kinetics of mouse pannexin 1 channel: a new concept for gating kinetics. Scientific Reports, 2017, 7, 10512 .	3.3	14
26	Aldosterone Modulates the Association between NCC and ENaC. Scientific Reports, 2017, 7, 4149.	3.3	21
27	A Model for Postdoctoral Education That Promotes Minority and Majority Success in the Biomedical Sciences. CBE Life Sciences Education, 2017, 16, ar65.	2.3	21
28	Regulation of Lung Epithelial Sodium Channels by Cytokines and Chemokines. Frontiers in Immunology, 2017, 8, 766.	4.8	40
29	Epithelial Sodium Channel-α Mediates the Protective Effect of the TNF-Derived TIP Peptide in Pneumolysin-Induced Endothelial Barrier Dysfunction. Frontiers in Immunology, 2017, 8, 842.	4.8	35
30	Inhibition of TRPC6 reduces non-small cell lung cancer cell proliferation and invasion. Oncotarget, 2017, 8, 5123-5134.	1.8	28
31	The sodium chloride cotransporter (NCC) and epithelial sodium channel (ENaC) associate. Biochemical Journal, 2016, 473, 3237-3252.	3.7	37
32	The Lectin-like Domain of TNF Increases ENaC Open Probability through a Novel Site at the Interface between the Second Transmembrane and C-terminal Domains of the I±-Subunit. Journal of Biological Chemistry, 2016, 291, 23440-23451.	3.4	20
33	Epithelial Sodium Channels (ENaCs)., 2016,, 569-641.		0
34	Membrane Transport: Ionic Environments, Signal Transduction, and Development of Therapeutic Targets. BioMed Research International, 2015, 2015, 1-2.	1.9	3
35	The Polarized Effect of Intracellular Calcium on the Renal Epithelial Sodium Channel Occurs as a Result of Subcellular Calcium Signaling Domains Maintained by Mitochondria. Journal of Biological Chemistry, 2015, 290, 28805-28811.	3.4	12
36	Acute ethanol induces apoptosis by stimulating TRPC6 via elevation of superoxide in oxygenated podocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 965-974.	4.1	7

3

#	Article	IF	CITATIONS
37	Prolactin stimulates sodium and chloride ion channels in A6 renal epithelial cells. American Journal of Physiology - Renal Physiology, 2015, 308, F697-F705.	2.7	11
38	ENaC inhibition stimulates HCl secretion in the mouse cortical collecting duct. I. Stilbene-sensitive Cl ^{â°'} secretion. American Journal of Physiology - Renal Physiology, 2015, 309, F251-F258.	2.7	13
39	WNK1 Activates Large-Conductance Ca2+-Activated K+ Channels through Modulation of ERK1/2 Signaling. Journal of the American Society of Nephrology: JASN, 2015, 26, 844-854.	6.1	35
40	Calmodulin and CaMKII modulate ENaC activity by regulating the association of MARCKS and the cytoskeleton with the apical membrane. American Journal of Physiology - Renal Physiology, 2015, 309, F456-F463.	2.7	42
41	Pendrin gene ablation alters ENaC subcellular distribution and open probability. American Journal of Physiology - Renal Physiology, 2015, 309, F154-F163.	2.7	32
42	Lovastatin-Induced Phosphatidylinositol-4-Phosphate 5-Kinase Diffusion from Microvilli Stimulates ROMK Channels. Journal of the American Society of Nephrology: JASN, 2015, 26, 1576-1587.	6.1	10
43	Interaction Between NCC and ENaC α, γ Subunits are Differentially Regulated―Role of SGK1. FASEB Journal, 2015, 29, 969.21.	0.5	0
44	Regulation of the Interaction of NCC and ENaCÎ ² by SGK1. FASEB Journal, 2015, 29, 969.22.	0.5	0
45	Calpainâ€⊋ Proteolysis of MARCKS is a Negative Feedback Regulator of ENaC. FASEB Journal, 2015, 29, .	0.5	0
46	ENaC activity and expression is decreased in the lungs of protein kinase C-α knockout mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L374-L385.	2.9	24
47	Basolateral P2X ₄ channels stimulate ENaC activity in <i>Xenopus</i> cortical collecting duct A6 cells. American Journal of Physiology - Renal Physiology, 2014, 307, F806-F813.	2.7	12
48	A Novel Tumor Necrosis Factor–mediated Mechanism of Direct Epithelial Sodium Channel Activation. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 522-532.	5.6	49
49	Chronic ethanol exposure alters the lung proteome and leads to mitochondrial dysfunction in alveolar type 2 cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L1026-L1035.	2.9	10
50	Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells. American Journal of Physiology - Renal Physiology, 2014, 307, F86-F95.	2.7	19
51	ENaC activity is increased in isolated, split-open cortical collecting ducts from protein kinase Cα knockout mice. American Journal of Physiology - Renal Physiology, 2014, 306, F309-F320.	2.7	42
52	Lovastatin inhibits human B lymphoma cell proliferation by reducing intracellular ROS and TRPC6 expression. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 894-901.	4.1	35
53	Contractile Force Is Enhanced in Aortas from Pendrin Null Mice Due to Stimulation of Angiotensin II-Dependent Signaling. PLoS ONE, 2014, 9, e105101.	2.5	9
54	WNK4 inhibition of ENaC is independent of Nedd4-2-mediated ENaC ubiquitination. American Journal of Physiology - Renal Physiology, 2013, 305, F31-F41.	2.7	39

#	Article	IF	Citations
55	High glucose induces podocyte apoptosis by stimulating TRPC6 via elevation of reactive oxygen species. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1434-1442.	4.1	73
56	Estradiol activates epithelial sodium channels in rat alveolar cells through the G protein-coupled estrogen receptor. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L878-L889.	2.9	34
57	Estradiol stimulates an anti-translocation expression pattern of glucocorticoid co-regulators in a hippocampal cell model. Physiology and Behavior, 2013, 122, 187-192.	2.1	15
58	Cholinergic regulation of epithelial sodium channels in rat alveolar type 2 epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L428-L437.	2.9	22
59	ENaC is regulated by natriuretic peptide receptor-dependent cGMP signaling. American Journal of Physiology - Renal Physiology, 2013, 304, F930-F937.	2.7	51
60	Lovastatin attenuates effects of cyclosporine A on tight junctions and apoptosis in cultured cortical collecting duct principal cells. American Journal of Physiology - Renal Physiology, 2013, 305, F304-F313.	2.7	11
61	Role of TRPC6 in High Glucoseâ€Induced Podocyte Apoptosis. FASEB Journal, 2013, 27, 1143.12.	0.5	0
62	Pendrin gene ablation reduces ENaC surface expression and open probability. FASEB Journal, 2013, 27, .	0.5	0
63	Estradiol increases plasma membrane insertion of αENaC in the lung. FASEB Journal, 2013, 27, 722.2.	0.5	O
64	Proteomic analysis of the lung proteome after chronic ethanol exposure. FASEB Journal, 2013, 27, 1143.1.	0.5	0
65	High salt diet stimulates ENaC in Dahl saltâ€sensitive rats. FASEB Journal, 2013, 27, 913.42.	0.5	O
66	Sex differences in the effects of βâ€estradiol on ENaC current in cell culture. FASEB Journal, 2013, 27, 1148.7.	0.5	0
67	Evidence for the existence of calcium signaling domains in a renal cortical collecting duct cell line. FASEB Journal, 2013, 27, 1148.15.	0.5	О
68	Ethanol stimulates epithelial sodium channels by elevating reactive oxygen species. American Journal of Physiology - Cell Physiology, 2012, 303, C1129-C1138.	4.6	20
69	Hypotonic stress upregulates \hat{l}^2 - and \hat{l}^3 -ENaC expression through suppression of ERK by inducing MKP-1. American Journal of Physiology - Renal Physiology, 2012, 303, F240-F252.	2.7	26
70	Phosphatidylinositol phosphate-dependent regulation of <i>Xenopus</i> ENaC by MARCKS protein. American Journal of Physiology - Renal Physiology, 2012, 303, F800-F811.	2.7	54
71	Frontiers in Renal and Epithelial Physiology – Grand Challenges. Frontiers in Physiology, 2012, 3, 2.	2.8	4
72	Epithelial Sodium Channel (ENaC) Activity In Type I Cells Differs From Type II Cells Following B-Adrenergic Stimulation. , 2012, , .		0

#	Article	IF	CITATIONS
73	Rituximab inhibits Kv1.3 channels in human B lymphoma cells via activation of Fc \hat{I}^3 RIIB receptors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 505-513.	4.1	12
74	Scanning ion conductance microscopy: a nanotechnology for biological studies in live cells. Frontiers in Physiology, 2012, 3, 483.	2.8	12
75	Calmodulin and CaM kinase II govern MARCKSâ€mediated PIP2â€dependent regulation of ENaC. FASEB Journal, 2012, 26, 867.15.	0.5	1
76	Rethinking the postdoctoral training experience: Fellowships In Research and Science Teaching (FIRST). FASEB Journal, 2012, 26, .	0.5	0
77	Analytical challenges in nanomedicine. Analytical and Bioanalytical Chemistry, 2011, 399, 2309-2311.	3.7	14
78	A role for MARCKS in phosphoinositideâ€dependent regulation of ENaC. FASEB Journal, 2011, 25, .	0.5	0
79	Biochemical composition of the functional amilorideâ€sensitive, heteroâ€multimeric, 4ps ENaC. FASEB Journal, 2011, 25, 860.1.	0.5	0
80	Pendrin Modulates ENaC Function by Changing Luminal HCO3â^'. Journal of the American Society of Nephrology: JASN, 2010, 21, 1928-1941.	6.1	98
81	Regulation of Epithelial Sodium Channel Trafficking by Ubiquitination. Proceedings of the American Thoracic Society, 2010, 7, 54-64.	3.5	70
82	The N-Terminal 81-aa Fragment is Critical for UT-A1 Urea Transporter Bioactivity~!2009-12-20~!2009-03-24~!2010-04-28~!. Journal of Epithelial Biology & Pharmacology, 2010, 3, 34-39.	1.2	5
83	Pendrin regulates ENaC abundance and function by modulating luminal HCO3â ⁻ concentration. FASEB Journal, 2010, 24, 606.9.	0.5	0
84	FIRST: Fellowships in Research & Science Teaching: A differential approach to postdoctoral training. FASEB Journal, 2010, 24, 632.6.	0.5	0
85	WNK4 inhibits ENaC activity and reduces \hat{l}^3 ENaC subunit expression, but has no effect on \hat{l}^2 ENaC expression. FASEB Journal, 2010, 24, 611.19.	0.5	0
86	Role of P97 protein in ENaC recycling. FASEB Journal, 2010, 24, 611.17.	0.5	0
87	The Contribution of Epithelial Sodium Channels to Alveolar Function in Health and Disease. Annual Review of Physiology, 2009, 71, 403-423.	13.1	170
88	Redox Regulation of Epithelial Sodium Channels Examined in Alveolar Type 1 and 2 Cells Patch-clamped in Lung Slice Tissue. Journal of Biological Chemistry, 2008, 283, 22875-22883.	3.4	63
89	A synthetic prostone activates apical chloride channels in A6 epithelial cells. American Journal of Physiology - Renal Physiology, 2008, 295, G234-G251.	3.4	64
90	Integrating Teaching and Research at the Postâ€doctoral level: The Fellowships in Research and Science Teaching (FIRST) Program. FASEB Journal, 2008, 22, 766.6.	0.5	0

#	Article	IF	CITATIONS
91	Enhancement of ciliary beat frequency induced by [Cl \hat{a}^{\prime}] i decrease in rat distal airway ciliary cells. FASEB Journal, 2008, 22, 1177.3.	0.5	O
92	An Aldosteroneâ€sensitive Basolateral P2X 4 Receptor Stimulates the Renal Epithelial Sodium Channel. FASEB Journal, 2008, 22, 1215.5.	0.5	0
93	Transactivation of the IGF-1R by aldosterone. American Journal of Physiology - Renal Physiology, 2007, 292, F1219-F1228.	2.7	23
94	Aldosterone-induced increases in superoxide production counters nitric oxide inhibition of epithelial Na channel activity in A6 distal nephron cells. American Journal of Physiology - Renal Physiology, 2007, 293, F1666-F1677.	2.7	56
95	Ceramide mediates inhibition of the renal epithelial sodium channel by tumor necrosis factor-α through protein kinase C. American Journal of Physiology - Renal Physiology, 2007, 293, F1178-F1186.	2.7	45
96	Regulation of the epithelial sodium channel by phosphatidylinositides: experiments, implications, and speculations. Pflugers Archiv European Journal of Physiology, 2007, 455, 169-180.	2.8	46
97	The Mechanism of Aldosteroneâ€Induced Transactivation of the IGFâ€1 Receptor. FASEB Journal, 2007, 21, A544.	0.5	0
98	Dampened GM-CSF signaling and impaired innate immune function in alveolar macrophages in the alcoholic lung. Alcohol, 2006, 39, 114.	1.7	0
99	Oxidative signaling in renal epithelium: Critical role of cytosolic phospholipase A2 and p38SAPK. Free Radical Biology and Medicine, 2006, 41, 213-221.	2.9	22
100	Physiology of Fetal Lung Fluid Clearance and the Effect of Labor. Seminars in Perinatology, 2006, 30, 34-43.	2.5	293
101	Dopamine regulation of amiloride-sensitive sodium channels in lung cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L710-L722.	2.9	70
102	Dopamine activates amiloride-sensitive sodium channels in alveolar type I cells in lung slice preparations. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L610-L618.	2.9	56
103	Effect of simvastatin on high glucose- and angiotensin II-induced activation of the JAK/STAT pathway in mesangial cells. American Journal of Physiology - Renal Physiology, 2006, 291, F116-F121.	2.7	48
104	Role of the JAK/STAT signaling pathway in diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2006, 290, F762-F768.	2.7	186
105	Functional ion channels in pulmonary alveolar type I cells support a role for type I cells in lung ion transport. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4964-4969.	7.1	168
106	Divalent cations regulate epithelial Na channel (ENaC) activity in A6 cells. FASEB Journal, 2006, 20, A797.	0.5	2
107	Stability of functional ENaC at the apical membrane of A6 cells FASEB Journal, 2006, 20, .	0.5	0
108	Hypertension and Sodium Channel Turnover. , 2006, , 613-621.		0

#	Article	IF	CITATIONS
109	Role of SGK1 in nitric oxide inhibition of ENaC in Na+-transporting epithelia. American Journal of Physiology - Cell Physiology, 2005, 289, C717-C726.	4.6	61
110	Acute Regulation of Epithelial Sodium Channel by Anionic Phospholipids. Journal of the American Society of Nephrology: JASN, 2005, 16, 3182-3187.	6.1	83
111	Phosphatidylinositol 3,4,5-Trisphosphate Mediates Aldosterone Stimulation of Epithelial Sodium Channel (ENaC) and Interacts with 1³-ENaC. Journal of Biological Chemistry, 2005, 280, 40885-40891.	3.4	63
112	Regulation of Na+ Channels in Lung Alveolar Type II Epithelial Cells. Proceedings of the American Thoracic Society, 2004, 1, 10-16.	3.5	59
113	Steroids and Exogenous γ-ENaC Subunit Modulate Cation Channels Formed by α-ENaC in Human B Lymphocytes. Journal of Biological Chemistry, 2004, 279, 33206-33212.	3.4	23
114	Influenza virus inhibits ENaC and lung fluid clearance. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L366-L373.	2.9	93
115	Isoflurane induces dopamine transporter trafficking into the cell cytoplasm. Synapse, 2004, 53, 68-73.	1.2	16
116	Regulation of Amiloride-Sensitive Na+Transport by Basal Nitric Oxide. American Journal of Respiratory Cell and Molecular Biology, 2004, 30, 720-728.	2.9	57
117	Chronic Ethanol Ingestion Increases Expression of the Angiotensin II Type 2 (AT2) Receptor and Enhances Tumor Necrosis Factor-alpha- and Angiotensin II-Induced Cytotoxicity Via AT2 Signaling in Rat Alveolar Epithelial Cells. Alcoholism: Clinical and Experimental Research, 2003, 27, 1006-1014.	2.4	25
118	Regulation of ion channel structure and function by reactive oxygen-nitrogen species. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L1184-L1189.	2.9	78
119	Characterization of an amiloride binding region in the α-subunit of ENaC. American Journal of Physiology - Renal Physiology, 2003, 285, F1279-F1290.	2.7	28
120	Chronic Ethanol Ingestion Increases Expression of the Angiotensin II Type 2 (AT2) Receptor and Enhances Tumor Necrosis Factor-??- and Angiotensin II-Induced Cytotoxicity Via AT2 Signaling in Rat Alveolar Epithelial Cells. Alcoholism: Clinical and Experimental Research, 2003, 27, 1006-1014.	2.4	20
121	Invited Review: Biophysical properties of sodium channels in lung alveolar epithelial cells. Journal of Applied Physiology, 2002, 93, 1852-1859.	2.5	119
122	Phosphatidylinositol 4,5-Bisphosphate (PIP2) Stimulates Epithelial Sodium Channel Activity in A6 Cells. Journal of Biological Chemistry, 2002, 277, 11965-11969.	3.4	154
123	Inhibition of the JAK/STAT Signaling Pathway Prevents the High Glucose-Induced Increase in TGF- \hat{l}^2 and Fibronectin Synthesis in Mesangial Cells. Diabetes, 2002, 51, 3505-3509.	0.6	156
124	ATP masks stretch activation of epithelial sodium channels in A6 distal nephron cells. American Journal of Physiology - Renal Physiology, 2002, 282, F501-F505.	2.7	68
125	Angiotensin II Evokes Calcium-Mediated Signaling Events in Isolated Dog Pancreatic Epithelial Cells. Pancreas, 2002, 25, 290-295.	1.1	14
126	\hat{l}^2 -Adrenergic regulation of amiloride-sensitive lung sodium channels. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L609-L620.	2.9	78

#	Article	IF	CITATIONS
127	Cryptdin 3 forms anion selective channels in cytoplasmic membranes of human embryonic kidney cells. American Journal of Physiology - Renal Physiology, 2002, 282, G757-G765.	3.4	26
128	Angiotensin II activation of the JAK/STAT pathway in mesangial cells is altered by high glucose. Kidney International, 2002, 61, 1605-1616.	5.2	122
129	Angiotensin (Angll) evokes calcium-mediated signalling events in isolated dog pancreatic duct epithelial (DPDE) cells. Gastroenterology, 2001, 120, A339.	1.3	0
130	Expression of highly selective sodium channels in alveolar type II cells is determined by culture conditions. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L646-L658.	2.9	171
131	<i>S</i> -adenosyl- <scp> </scp> -homocysteine hydrolase is necessary for aldosterone-induced activity of epithelial Na ⁺ channels. American Journal of Physiology - Cell Physiology, 2001, 281, C773-C785.	4.6	14
132	Contrasting effects of cPLA ₂ on epithelial Na ⁺ transport. American Journal of Physiology - Cell Physiology, 2001, 281, C147-C156.	4.6	35
133	Cell surface expression and turnover of the α-subunit of the epithelial sodium channel. American Journal of Physiology - Renal Physiology, 2001, 281, F213-F221.	2.7	20
134	Cloning of the Proto-oncogene c-src from Rat Testis. DNA Sequence, 2001, 12, 425-429.	0.7	7
135	Cytosolic Phospholipase A2 Is Required for Optimal ATP Activation of BK Channels in GH3 Cells. Journal of Biological Chemistry, 2001, 276, 7136-7142.	3.4	14
136	Toward Understanding the Role of Methylation in Aldosterone-Sensitive Na+ Transport. Physiology, 2000, 15, 161-165.	3.1	7
137	The effect of rapamycin on single ENaC channel activity and phosphorylation in A6 cells. American Journal of Physiology - Cell Physiology, 2000, 279, C81-C88.	4.6	28
138	Effects of fatty acids on BK channels in GH3cells. American Journal of Physiology - Cell Physiology, 2000, 279, C1211-C1219.	4.6	59
139	Methylation Increases the Open Probability of the Epithelial Sodium Channel in A6 Epithelia. Journal of Biological Chemistry, 2000, 275, 16550-16559.	3.4	25
140	Differential Effects of Protein Kinase C on the Levels of Epithelial Na+ Channel Subunit Proteins. Journal of Biological Chemistry, 2000, 275, 25760-25765.	3.4	77
141	Antisense oligonucleotides against the $\hat{l}\pm$ -subunit of ENaC decrease lung epithelial cation-channel activity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L1046-L1051.	2.9	82
142	Ca ²⁺ sensitivity of BK channels in GH ₃ cells involves cytosolic phospholipase A ₂ . American Journal of Physiology - Cell Physiology, 1999, 276, C201-C209.	4.6	17
143	S-Adenosyl-l-homocysteine Hydrolase Regulates Aldosterone-induced Na+ Transport. Journal of Biological Chemistry, 1999, 274, 3842-3850.	3.4	30
144	Regulation of Na+ Reabsorption by the Aldosterone-induced Small G Protein K-Ras2A. Journal of Biological Chemistry, 1999, 274, 35449-35454.	3.4	75

#	Article	lF	CITATIONS
145	Regulation of an amiloride-sensitive Na+-permeable channel by a Î ² 2-adrenergic agonist, cytosolic Ca2+and Clâ [*] in fetal rat alveolar epithelium. Journal of Physiology, 1999, 515, 669-683.	2.9	71
146	Isoprenylcysteine-O-carboxyl Methyltransferase Regulates Aldosterone-sensitive Na+ Reabsorption. Journal of Biological Chemistry, 1999, 274, 26912-26916.	3.4	29
147	Erythropoietin receptor-operated Ca2+ channels: Activation by phospholipase C-Î ³ 1. Kidney International, 1998, 53, 1259-1268.	5.2	77
148	Carboxylmethylation of the \hat{I}^2 Subunit of xENaC Regulates Channel Activity. Journal of Biological Chemistry, 1998, 273, 28746-28751.	3.4	53
149	Angiotensin II-induced Tyrosine Phosphorylation of Signal Transducers and Activators of Transcription 1 Is Regulated by Janus-activated Kinase 2 and Fyn Kinases and Mitogen-activated Protein Kinase Phosphatase 1. Journal of Biological Chemistry, 1998, 273, 30795-30800.	3.4	75
150	Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: roles of SHP-1 and SHP-2. American Journal of Physiology - Cell Physiology, 1998, 275, C1216-C1223.	4.6	123
151	Nitric oxide inhibits lung sodium transport through a cGMP-mediated inhibition of epithelial cation channels. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L475-L484.	2.9	79
152	Ascorbate Deficiency Impairs Sodium Transport by Distal Lung Epithelia â™ 1954. Pediatric Research, 1998, 43, 333-333.	2.3	2
153	Expression of the Cystic Fibrosis Phenotype in a Renal Amphibian Epithelial Cell Line. Journal of Biological Chemistry, 1997, 272, 594-600.	3.4	58
154	Renal sodium channels: Regulation and single channel properties. Kidney International, 1995, 48, 941-949.	5.2	65
155	Role of growth factors in mesangial cell ion channel regulation. Kidney International, 1995, 48, 1158-1166.	5.2	26
156	The effect of racemic ketamine on the large conductance Ca+2-activated potassium (BK) channels in GH3 cells. Brain Research, 1994, 638, 61-68.	2.2	22
157	Cyclosporin A inhibits apical secretory K+ channels in rabbit cortical collecting tubule principal cells. Kidney International, 1993, 44, 974-984.	5.2	44
158	Cyclic GMP-activated channel activity in renal epithelial cells (A6). Biochimica Et Biophysica Acta - Biomembranes, 1991, 1070, 152-156.	2.6	19
159	Potassium permeable channels in primary cultures of rabbit cortical collecting tubule. Kidney International, 1991, 40, 441-452.	5.2	44
160	Regulation of the amiloride-blockable sodium channel from epithelial tissue. Molecular and Cellular Biochemistry, 1990, 99, 141-150.	3.1	36
161	Chapter 3 Ion Channel Fluctuations: "Noise―and Single-Channel Measurements. Current Topics in Membranes and Transport, 1990, 37, 61-114.	0.6	14
162	The Amiloride-Blockable Sodium Channel of Epithelial Tissue. , 1988, 1, 251-282.		33

#	Article	IF	CITATIONS
163	Single-Channel Recordings from Two Types of Amiloride-Sensitive Epithelial Na ⁺ Channels. Membrane Biochemistry, 1986, 6, 149-171.	0.6	63
164	Arrangement of the subunits of the nicotinic acetylcholine receptor of Torpedo californica as determined by .alphaneurotoxin crosslinking. Biochemistry, 1985, 24, 2210-2219.	2.5	38
165	Acid pH and weak acids induce Naâ^'Cl contransport in the rabbit urinary bladder. Journal of Membrane Biology, 1983, 76, 151-164.	2.1	10
166	Sulfhydryl reagents affect Na+ uptake into toad bladder membrane vesicles. Journal of Membrane Biology, 1983, 71, 39-45.	2.1	5
167	Effect of CO2 on neurons of the house cricket, acheta domestica. Journal of Neurobiology, 1983, 14, 237-250.	3.6	25
168	Amiloride-inhibited Na+ uptake into toad bladder microsomes is Na+-H+ exchange. Biochimica Et Biophysica Acta - Biomembranes, 1983, 733, 194-197.	2.6	10
169	Respiration and sodium transport in rabbit urinary bladder. Biochimica Et Biophysica Acta - Biomembranes, 1982, 689, 299-308.	2.6	4
170	Active and passive Na+ fluxes across the basolateral membrane of rabbit urinary bladder. Journal of Membrane Biology, 1982, 67, 219-229.	2.1	30
171	Chapter 13 Membrane Selectivity and Ion Activities of Mammalian Tight Epithelia. Current Topics in Membranes and Transport, 1980, 13, 199-213.	0.6	1
172	Tea blocks potassium current in squid axon. General Pharmacology, 1980, 11, 189-192.	0.7	2
173	Current-voltage relationship of the basolateral membrane of a tight epithelium. Biochimica Et Biophysica Acta - Biomembranes, 1979, 555, 519-523.	2.6	37
174	Arginine-specific reagents remove sodium channel inactivation. Nature, 1978, 271, 473-476.	27.8	73
175	Effects of nystatin on membrane conductance and internal ion activities inAplysia neurons. Journal of Membrane Biology, 1977, 37, 137-156.	2.1	53
176	The mechanism of Na+ transport by rabbit urinary bladder. Journal of Membrane Biology, 1976, 28, 41-70.	2.1	185
177	Membrane Currents Carried by Ca, Sr, and Ba in Barnacle Muscle Fiber During Voltage Clamp. Journal of General Physiology, 1974, 63, 564-578.	1.9	238
178	Tetrodotoxin sensitivity of muscle action potentials in pufferfishes and related fishes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1974, 89, 59-72.	1.6	26