Tatiana Giraud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3681567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 2011, 7, e1002230.	3.5	902
2	Evolution of supercolonies: The Argentine ants of southern Europe. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6075-6079.	7.1	374
3	High genetic diversity in French invasive populations of common ragweed, <i>Ambrosia artemisiifolia</i> , as a result of multiple sources of introduction. Molecular Ecology, 2005, 14, 4275-4285.	3.9	373
4	Cospeciation vs hostâ€shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytologist, 2013, 198, 347-385.	7.3	352
5	New Insight into the History of Domesticated Apple: Secondary Contribution of the European Wild Apple to the Genome of Cultivated Varieties. PLoS Genetics, 2012, 8, e1002703.	3.5	334
6	Speciation in fungi. Fungal Genetics and Biology, 2008, 45, 791-802.	2.1	281
7	Linking the emergence of fungal plant diseases with ecological speciation. Trends in Ecology and Evolution, 2010, 25, 387-395.	8.7	281
8	The domestication and evolutionary ecology of apples. Trends in Genetics, 2014, 30, 57-65.	6.7	261
9	High Variability of Mitochondrial Gene Order among Fungi. Genome Biology and Evolution, 2014, 6, 451-465.	2.5	223
10	PHYLOGENETIC EVIDENCE OF HOST-SPECIFIC CRYPTIC SPECIES IN THE ANTHER SMUT FUNGUS. Evolution; International Journal of Organic Evolution, 2007, 61, 15-26.	2.3	209
11	Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biological Reviews, 2011, 86, 421-442.	10.4	204
12	Silene as a model system in ecology and evolution. Heredity, 2009, 103, 5-14.	2.6	203
13	Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Molecular Ecology, 2014, 23, 753-773.	3.9	203
14	Sex, outcrossing and mating types: unsolved questions in fungi and beyond. Journal of Evolutionary Biology, 2012, 25, 1020-1038.	1.7	197
15	Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nature Communications, 2014, 5, 2876.	12.8	195
16	A congruence index for testing topological similarity between trees. Bioinformatics, 2007, 23, 3119-3124.	4.1	176
17	The population biology of fungal invasions. Molecular Ecology, 2015, 24, 1969-1986.	3.9	173
18	Challenges of microsatellite isolation in fungi. Fungal Genetics and Biology, 2007, 44, 933-949.	2.1	166

#	Article	IF	CITATIONS
19	RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Molecular Biology and Evolution, 1997, 14, 1177-1185.	8.9	163
20	Assessing the Performance of Single-Copy Genes for Recovering Robust Phylogenies. Systematic Biology, 2008, 57, 613-627.	5.6	162
21	The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Diversity, 2011, 50, 121-133.	12.3	148
22	Mating System of the Anther Smut Fungus <i>Microbotryum violaceum</i> : Selfing under Heterothallism. Eukaryotic Cell, 2008, 7, 765-775.	3.4	129
23	Two Sibling Species of the Botrytis cinerea Complex, transposa and vacuma, Are Found in Sympatry on Numerous Host Plants. Phytopathology, 1999, 89, 967-973.	2.2	125
24	NATIVE SUPERCOLONIES OF UNRELATED INDIVIDUALS IN THE INVASIVE ARGENTINE ANT. Evolution; International Journal of Organic Evolution, 2006, 60, 782-791.	2.3	118
25	Cophylogeny of the anther smut fungi and their caryophyllaceous hosts: Prevalence of host shifts and importance of delimiting parasite species for inferring cospeciation. BMC Evolutionary Biology, 2008, 8, 100.	3.2	116
26	Partition of the Botrytis cinerea complex in France using multiple gene genealogies. Mycologia, 2005, 97, 1251-1267.	1.9	112
27	Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi. Current Biology, 2015, 25, 2562-2569.	3.9	110
28	Genetic characterisation of Botrytis cinerea populations in Chile. Mycological Research, 2002, 106, 594-601.	2.5	109
29	Isolation of twelve microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia striiformis f.sp. tritici. Molecular Ecology Notes, 2002, 2, 563-565.	1.7	105
30	Nuclear and Chloroplast Microsatellites Show Multiple Introductions in the Worldwide Invasion History of Common Ragweed, Ambrosia artemisiifolia. PLoS ONE, 2011, 6, e17658.	2.5	105
31	Sympatric genetic differentiation of a generalist pathogenic fungus, <i>Botrytis cinerea</i> , on two different host plants, grapevine and bramble. Journal of Evolutionary Biology, 2008, 21, 122-132.	1.7	103
32	Rapidly evolving genes in pathogens: Methods for detecting positive selection and examples among fungi, bacteria, viruses and protists. Infection, Genetics and Evolution, 2009, 9, 656-670.	2.3	100
33	A road map for molecular ecology. Molecular Ecology, 2013, 22, 2605-2626.	3.9	100
34	A <i>micro<scp>RNA</scp></i> allele that emerged prior to apple domestication may underlie fruit size evolution. Plant Journal, 2015, 84, 417-427.	5.7	95
35	Phylogenetic determinants of potential host shifts in fungal pathogens. Journal of Evolutionary Biology, 2009, 22, 2532-2541.	1.7	92
36	Evolutionary strata on young mating-type chromosomes despite the lack of sexual antagonism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7067-7072.	7.1	92

#	Article	IF	CITATIONS
37	Characterization of nine polymorphic microsatellite loci in the fungus Botrytis cinerea (Ascomycota). Molecular Ecology Notes, 2002, 2, 253-255.	1.7	88
38	Multiple Infections by the Anther Smut Pathogen Are Frequent and Involve Related Strains. PLoS Pathogens, 2007, 3, e176.	4.7	86
39	Postglacial recolonization history of the <scp>E</scp> uropean crabapple (<i>Malus sylvestris) Tj ETQq1 1 0.7843 2249-2263.</i>	14 rgBT / 3.9	Overlock 10 86
40	Genetic signature of a range expansion and leapâ€frog event after the recent invasion of Europe by the grapevine downy mildew pathogen <i>Plasmopara viticola</i> . Molecular Ecology, 2013, 22, 2771-2786.	3.9	86
41	Genetic diversity in natural populations: a fundamental component of plant–microbe interactions. Current Opinion in Plant Biology, 2008, 11, 135-143.	7.1	85
42	Characterization of Bc- <i>hch,</i> the <i>Botrytis cinerea</i> homolog of the <i>Neurospora crassahet-c</i> vegetative incompatibility locus, and its use as a population marker. Mycologia, 2003, 95, 251-261.	1.9	82
43	The worldwide expansion of the Argentine ant. Diversity and Distributions, 2010, 16, 170-186.	4.1	82
44	Fungal Sex: The Basidiomycota. Microbiology Spectrum, 2017, 5, .	3.0	82
45	Multiple convergent supergene evolution events in mating-type chromosomes. Nature Communications, 2018, 9, 2000.	12.8	81
46	Importance of the Life Cycle in Sympatric Host Race Formation and Speciation of Pathogens. Phytopathology, 2006, 96, 280-287.	2.2	80
47	Maintenance of Fungal Pathogen Species That Are Specialized to Different Hosts: Allopatric Divergence and Introgression through Secondary Contact. Molecular Biology and Evolution, 2011, 28, 459-471.	8.9	79
48	Chaos of Rearrangements in the Mating-Type Chromosomes of the Anther-Smut Fungus <i>Microbotryum lychnidis-dioicae</i> . Genetics, 2015, 200, 1275-1284.	2.9	78
49	Partition of the <i>Botrytis cinerea</i> complex in France using multiple gene genealogies. Mycologia, 2005, 97, 1251-1267.	1.9	75
50	When can host shifts produce congruent host and parasite phylogenies? A simulation approach. Journal of Evolutionary Biology, 2007, 20, 1428-1438.	1.7	75
51	Distribution of the antherâ€smut pathogen <i>Microbotryum</i> on species of the Caryophyllaceae. New Phytologist, 2010, 187, 217-229.	7.3	73
52	Evolution of uni- and bifactorial sexual compatibility systems in fungi. Heredity, 2013, 111, 445-455.	2.6	73
53	Widespread selective sweeps throughout the genome of model plant pathogenic fungi and identification of effector candidates. Molecular Ecology, 2017, 26, 2041-2062.	3.9	71
54	Glacial Refugia in Pathogens: European Genetic Structure of Anther Smut Pathogens on Silene latifolia and Silene dioica. PLoS Pathogens, 2010, 6, e1001229.	4.7	70

#	Article	IF	CITATIONS
55	Distinct invasion sources of common ragweed (Ambrosia artemisiifolia) in Eastern and Western Europe. Biological Invasions, 2011, 13, 933-944.	2.4	69
56	Ancient <i>Trans</i> -specific Polymorphism at Pheromone Receptor Genes in Basidiomycetes. Genetics, 2009, 181, 209-223.	2.9	68
57	Patterns of within population dispersal and mating of the fungus Microbotryum violaceum parasitising the plant Silene latifolia. Heredity, 2004, 93, 559-565.	2.6	66
58	Repeat-Induced Point Mutation and the Population Structure of Transposable Elements in Microbotryum violaceum. Genetics, 2005, 170, 1081-1089.	2.9	66
59	EVOLUTION OF REPRODUCTIVE ISOLATION WITHIN A PARASITIC FUNGAL SPECIES COMPLEX. Evolution; International Journal of Organic Evolution, 2007, 61, 1781-1787.	2.3	66
60	Maximized virulence in a sterilizing pathogen: the antherâ€smut fungus and its coâ€evolved hosts. Journal of Evolutionary Biology, 2008, 21, 1544-1554.	1.7	66
61	Existence of a pattern of reproductive character displacement in <i>Homobasidiomycota</i> but not in <i>Ascomycota</i> . Journal of Evolutionary Biology, 2008, 21, 761-772.	1.7	60
62	Funybase: a Fungal phylogenomic database. BMC Bioinformatics, 2008, 9, 456.	2.6	60
63	Emergence of novel fungal pathogens by ecological speciation: importance of the reduced viability of immigrants. Molecular Ecology, 2011, 20, 4521-4532.	3.9	60
64	Anthropogenic and natural drivers of gene flow in a temperate wild fruit tree: a basis for conservation and breeding programs in apples. Evolutionary Applications, 2015, 8, 373-384.	3.1	59
65	Sex and parasites: genomic and transcriptomic analysis of Microbotryum lychnidis-dioicae, the biotrophic and plant-castrating anther smut fungus. BMC Genomics, 2015, 16, 461.	2.8	58
66	Domestication of the Emblematic White Cheese-Making Fungus Penicillium camemberti and Its Diversification into Two Varieties. Current Biology, 2020, 30, 4441-4453.e4.	3.9	58
67	Induction of sexual reproduction and genetic diversity in the cheese fungus <i><scp>P</scp>enicillium roqueforti</i> . Evolutionary Applications, 2014, 7, 433-441.	3.1	57
68	Microsatellite loci to recognize species for the cheese starter and contaminating strains associated with cheese manufacturing. International Journal of Food Microbiology, 2010, 137, 204-213.	4.7	56
69	Extensive Divergence Between Mating-Type Chromosomes of the Anther-Smut Fungus. Genetics, 2013, 193, 309-315.	2.9	55
70	COMPETITION, COOPERATION AMONG KIN, AND VIRULENCE IN MULTIPLE INFECTIONS. Evolution; International Journal of Organic Evolution, 2011, 65, 1357-1366.	2.3	54
71	Cropâ€toâ€wild gene flow and spatial genetic structure in the closest wild relatives of the cultivated apple. Evolutionary Applications, 2013, 6, 737-748.	3.1	54
72	Isolation of 12 microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia triticina. Molecular Ecology Notes, 2003, 3, 65-67.	1.7	52

#	Article	IF	CITATIONS
73	Characterization of Bc-hch, the Botrytis cinerea Homolog of the Neurospora crassa het-c Vegetative Incompatibility Locus, and Its Use as a Population Marker. Mycologia, 2003, 95, 251.	1.9	52
74	Degeneration of the Nonrecombining Regions in the Mating-Type Chromosomes of the Anther-Smut Fungi. Molecular Biology and Evolution, 2015, 32, 928-943.	8.9	49
75	Polymorphic microsatellite DNA markers in the ant Gnamptogenys striatula. Molecular Ecology, 1999, 8, 2143-2145.	3.9	46
76	Pathogen Relatedness Affects the Prevalence of Withinâ€Host Competition. American Naturalist, 2006, 168, 121-126.	2.1	46
77	Lineage Selection and the Maintenance of Sex. PLoS ONE, 2013, 8, e66906.	2.5	46
78	Insights into Penicillium roqueforti Morphological and Genetic Diversity. PLoS ONE, 2015, 10, e0129849.	2.5	46
79	Recombination suppression and evolutionary strata around matingâ€ŧype loci in fungi: documenting patterns and understanding evolutionary and mechanistic causes. New Phytologist, 2021, 229, 2470-2491.	7.3	46
80	New insights into the history of domesticated and wild apricots and its contribution to <i>Plum pox virus</i> resistance. Molecular Ecology, 2016, 25, 4712-4729.	3.9	45
81	Independent domestication events in the blueâ€cheese fungus <i>Penicillium roqueforti</i> . Molecular Ecology, 2020, 29, 2639-2660.	3.9	45
82	Population genomics of apricots unravels domestication history and adaptive events. Nature Communications, 2021, 12, 3956.	12.8	45
83	Selfing Propensity under Choice Conditions in a Parasitic Fungus, Microbotryum violaceum, and Parameters Influencing Infection Success in Artificial Inoculations. International Journal of Plant Sciences, 2005, 166, 649-657.	1.3	44
84	Finding candidate genes under positive selection in Non-model species: examples of genes involved in host specialization in pathogens. Molecular Ecology, 2010, 19, 292-306.	3.9	44
85	Population genetics of fungal diseases of plants. Parasite, 2008, 15, 449-454.	2.0	43
86	Independent domestications of cultivated tree peonies from different wild peony species. Molecular Ecology, 2014, 23, 82-95.	3.9	41
87	Cropâ€ŧoâ€wild gene flow and its fitness consequences for a wild fruit tree: Towards a comprehensive conservation strategy of the wild apple in Europe. Evolutionary Applications, 2017, 10, 180-188.	3.1	41
88	The complex evolutionary history of apricots: Species divergence, gene flow and multiple domestication events. Molecular Ecology, 2019, 28, 5299-5314.	3.9	41
89	Strong effect of Penicillium roqueforti populations on volatile and metabolic compounds responsible for aromas, flavor and texture in blue cheeses. International Journal of Food Microbiology, 2021, 354, 109174.	4.7	41
90	Hybrid sterility and inviability in the parasitic fungal species complex <i>Microbotryum</i> . Journal of Evolutionary Biology, 2009, 22, 683-698.	1.7	40

#	Article	IF	CITATIONS
91	Sex in Penicillium: Combined phylogenetic and experimental approaches. Fungal Genetics and Biology, 2010, 47, 693-706.	2.1	40
92	Sex in Cheese: Evidence for Sexuality in the Fungus Penicillium roqueforti. PLoS ONE, 2012, 7, e49665.	2.5	40
93	Genes under positive selection in a model plant pathogenic fungus, Botrytis. Infection, Genetics and Evolution, 2012, 12, 987-996.	2.3	40
94	The â€~ <scp>D</scp> r <scp>J</scp> ekyll and <scp>M</scp> r <scp>H</scp> yde fungus': noble rot versus gray mold symptoms of <i><scp>B</scp>otrytis cinerea</i> on grapes. Evolutionary Applications, 2013, 6, 960-969.	3.1	40
95	Contrasted patterns in mating-type chromosomes in fungi: Hotspots versus coldspots of recombination. Fungal Biology Reviews, 2015, 29, 220-229.	4.7	40
96	Temporal isolation explains hostâ€related genetic differentiation in a group of widespread mycoparasitic fungi. Molecular Ecology, 2011, 20, 1492-1507.	3.9	37
97	Allee effects in ants. Journal of Animal Ecology, 2013, 82, 956-965.	2.8	37
98	Population structure and mating biology of the polygynous ponerine antGnamptogenys striatulain Brazil. Molecular Ecology, 2000, 9, 1835-1841.	3.9	36
99	Speciation: Selection against migrant pathogens: the immigrant inviability barrier in pathogens. Heredity, 2006, 97, 316-318.	2.6	36
100	Strong phylogeographic coâ€structure between the antherâ€smut fungus and its white campion host. New Phytologist, 2016, 212, 668-679.	7.3	36
101	Europe as a bridgehead in the worldwide invasion history of grapevine downy mildew, Plasmopara viticola. Current Biology, 2021, 31, 2155-2166.e4.	3.9	36
102	The anther smut disease on Gypsophila repens: a case of parasite sub-optimal performance following a recent host shift?. Journal of Evolutionary Biology, 2005, 18, 1293-1303.	1.7	35
103	The tempo and modes of evolution of reproductive isolation in fungi. Heredity, 2012, 109, 204-214.	2.6	35
104	Isolation of eight polymorphic microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Fusarium culmorum. Molecular Ecology Notes, 2002, 2, 121-123.	1.7	34
105	Sexâ€Ratio Bias in Populations of the Phytopathogenic Fungus Microbotryum violaceum from Several Host Species. International Journal of Plant Sciences, 2003, 164, 641-647.	1.3	34
106	Telomeric DNA of Botrytis cinerea: a useful tool for strain identification. FEMS Microbiology Letters, 2006, 157, 267-272.	1.8	34
107	Migration patterns and changes in population biology associated with the worldwide spread of the oilseed rape pathogen <i>Leptosphaeria maculans</i> . Molecular Ecology, 2012, 21, 2519-2533.	3.9	34
108	Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution; International Journal of Organic Evolution, 2006, 60, 782-91.	2.3	34

#	Article	IF	CITATIONS
109	History of the invasion of the anther smut pathogen on S ilene latifolia in N orth A merica. New Phytologist, 2013, 198, 946-956.	7.3	33
110	Genomic basis of the differences between cider and dessert apple varieties. Evolutionary Applications, 2015, 8, 650-661.	3.1	33
111	Genetic differentiation of neutral markers and quantitative traits in predominantly selfing metapopulations: confronting theory and experiments with Arabidopsis thaliana. Genetical Research, 2006, 87, 1-12.	0.9	32
112	LINKAGE TO THE MATING-TYPE LOCUS ACROSS THE GENUS <i>MICROBOTRYUM</i> : INSIGHTS INTO NONRECOMBINING CHROMOSOMES. Evolution; International Journal of Organic Evolution, 2012, 66, 3519-3533.	2.3	32
113	Fungi as a Source of Food. Microbiology Spectrum, 2017, 5, .	3.0	31
114	EXPERIMENTAL DEMONSTRATION OF A CAUSAL RELATIONSHIP BETWEEN HETEROGENEITY OF SELECTION AND GENETIC DIFFERENTIATION IN QUANTITATIVE TRAITS. Evolution; International Journal of Organic Evolution, 2004, 58, 1434-1445.	2.3	30
115	Expressed sequences tags of the anther smut fungus, Microbotryum violaceum, identify mating and pathogenicity genes. BMC Genomics, 2007, 8, 272.	2.8	30
116	Do black truffles avoid sexual harassment by linking mating type and vegetative incompatibility?. New Phytologist, 2013, 199, 10-13.	7.3	29
117	Using phylogenies of pheromone receptor genes in the <i>Microbotryum violaceum</i> species complex to investigate possible speciation by hybridization. Mycologia, 2010, 102, 689-696.	1.9	28
118	Evolution of pathogenicity traits in the apple scab fungal pathogen in response to the domestication of its host. Evolutionary Applications, 2012, 5, 694-704.	3.1	28
119	Coâ€occurrence and hybridization of antherâ€smut pathogens specialized on Dianthus hosts. Molecular Ecology, 2017, 26, 1877-1890.	3.9	28
120	Cause and Effectors: Whole-Genome Comparisons Reveal Shared but Rapidly Evolving Effector Sets among Host-Specific Plant-Castrating Fungi. MBio, 2019, 10, .	4.1	27
121	Do Deletions of Mos1-Like Elements Occur Randomly in the Drosophilidae Family?. Journal of Molecular Evolution, 2002, 54, 227-234.	1.8	26
122	Isolation of five polymorphic microsatellite loci in the invasive weed Ambrosia artemisiifolia (Asteraceae) using an enrichment protocol. Molecular Ecology Notes, 2005, 5, 381-383.	1.7	26
123	Within-host competitive exclusion among species of the anther smut pathogen. BMC Ecology, 2009, 9, 11.	3.0	26
124	<scp>cloncase</scp> : Estimation of sex frequency and effective population size by clonemate resampling in partially clonal organisms. Molecular Ecology Resources, 2016, 16, 845-861.	4.8	25
125	Blue cheese-making has shaped the population genetic structure of the mould Penicillium roqueforti. PLoS ONE, 2017, 12, e0171387.	2.5	25
126	Introduction: microbial local adaptation: insights from natural populations, genomics and experimental evolution. Molecular Ecology, 2017, 26, 1703-1710.	3.9	24

#	Article	IF	CITATIONS
127	Deleterious effects of recombination and possible nonrecombinatorial advantages of sex in a fungal model. Journal of Evolutionary Biology, 2013, 26, 1968-1978.	1.7	23
128	Fertility depression among cheeseâ€making Penicillium roqueforti strains suggests degeneration during domestication. Evolution; International Journal of Organic Evolution, 2016, 70, 2099-2109.	2.3	23
129	Gene Presence–Absence Polymorphism in Castrating Anther-Smut Fungi: Recent Gene Gains and Phylogeographic Structure. Genome Biology and Evolution, 2018, 10, 1298-1314.	2.5	23
130	Understanding Adaptation, Coevolution, Host Specialization, and Mating System in Castrating Anther-Smut Fungi by Combining Population and Comparative Genomics. Annual Review of Phytopathology, 2019, 57, 431-457.	7.8	23
131	Identification of the First Oomycete Mating-type Locus Sequence in the Grapevine Downy Mildew Pathogen, Plasmopara viticola. Current Biology, 2020, 30, 3897-3907.e4.	3.9	23
132	The Minisatellite MSB1, in the Fungus Botrytis cinerea, Probably Mutates by Slippage. Molecular Biology and Evolution, 1998, 15, 1524-1531.	8.9	22
133	PERMANENT GENETIC RESOURCES: Isolation of 60 polymorphic microsatellite loci in EST libraries of four sibling species of the phytopathogenic fungal complex <i>Microbotryum</i> . Molecular Ecology Resources, 2008, 8, 387-392.	4.8	22
134	SIBLING COMPETITION ARENA: SELFING AND A COMPETITION ARENA CAN COMBINE TO CONSTITUTE A BARRIER TO GENE FLOW IN SYMPATRY. Evolution; International Journal of Organic Evolution, 2012, 66, 1917-1930.	2.3	22
135	A genome scan of diversifying selection in <i>Ophiocordyceps</i> zombieâ€ant fungi suggests a role for enterotoxins in coâ€evolution and host specificity. Molecular Ecology, 2018, 27, 3582-3598.	3.9	22
136	Chapter 3 Genome Evolution in Plant Pathogenic and Symbiotic Fungi. Advances in Botanical Research, 2009, , 151-193.	1.1	21
137	Convergent recombination cessation between mating-type genes and centromeres in selfing anther-smut fungi. Genome Research, 2019, 29, 944-953.	5.5	21
138	High genetic relatedness among nestmate queens in the polygynous ponerine ant Gnamptogenys striatula in Brazil. Behavioral Ecology and Sociobiology, 2001, 49, 128-134.	1.4	20
139	Isolation of 44 polymorphic microsatellite loci in three host races of the phytopathogenic fungus Microbotryum violaceum. Molecular Ecology Notes, 2002, 2, 142-146.	1.7	20
140	Fungal Sex: The Basidiomycota. , 0, , 147-175.		20
141	Higher Gene Flow in Sex-Related Chromosomes than in Autosomes during Fungal Divergence. Molecular Biology and Evolution, 2020, 37, 668-682.	8.9	19
142	Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107.	3.9	19
143	Little Evidence of Antagonistic Selection in the Evolutionary Strata of Fungal Mating-Type Chromosomes (<i>Microbotryum lychnidis-dioicae)</i> . G3: Genes, Genomes, Genetics, 2019, 9, 1987-1998.	1.8	18

Population genomics revealed cryptic species within host-specific zombie-ant fungi (Ophiocordyceps) Tj ETQq0 0 0.29 BT /Overlock 10 Tf

#	Article	IF	CITATIONS
145	Speciation in parasites: host switching does not automatically lead to allopatry. Trends in Parasitology, 2006, 22, 151-152.	3.3	17
146	Epidemiology and Evolution of Fungal Pathogens in Plants and Animals. , 2011, , 59-132.		17
147	Distribution and population structure of the anther smut <i><scp>M</scp>icrobotryum silenesâ€acaulis</i> parasitizing an arctic–alpine plant. Molecular Ecology, 2016, 25, 811-824.	3.9	17
148	Coâ€occurrence among three divergent plantâ€castrating fungi in the same <i>Silene</i> host species. Molecular Ecology, 2018, 27, 3357-3370.	3.9	17
149	Mating-Type Locus Organization and Mating-Type Chromosome Differentiation in the Bipolar Edible Button Mushroom Agaricus bisporus. Genes, 2021, 12, 1079.	2.4	17
150	Purifying selection after episodes of recurrent adaptive diversification in fungal pathogens. Infection, Genetics and Evolution, 2013, 17, 123-131.	2.3	15
151	Influence of Multiple Infection and Relatedness on Virulence: Disease Dynamics in an Experimental Plant Population and Its Castrating Parasite. PLoS ONE, 2014, 9, e98526.	2.5	15
152	Characterization of Bc-hch, the Botrytis cinerea homolog of the Neurospora crassahet-c vegetative incompatibility locus, and its use as a population marker. Mycologia, 2003, 95, 251-61.	1.9	15
153	Intragenome Diversity of Gene Families Encoding Toxin-like Proteins in Venomous Animals. Integrative and Comparative Biology, 2016, 56, 938-949.	2.0	14
154	Host Phenology and Geography as Drivers of Differentiation in Generalist Fungal Mycoparasites. PLoS ONE, 2015, 10, e0120703.	2.5	14
155	What is sympatric speciation in parasites?. Trends in Parasitology, 2004, 20, 207-208.	3.3	13
156	Performance of a Hybrid Fungal Pathogen on Pure-Species and Hybrid Host Plants. International Journal of Plant Sciences, 2014, 175, 724-730.	1.3	13
157	Pattern and causes of the establishment of the invasive bacterial potato pathogen Dickeya solani and of the maintenance of the resident pathogen D.Âdianthicola. Molecular Ecology, 2021, 30, 608-624.	3.9	13
158	Size Variation of the Nonrecombining Region on the Mating-Type Chromosomes in the Fungal <i>Podospora anserina</i> Species Complex. Molecular Biology and Evolution, 2021, 38, 2475-2492.	8.9	13
159	Homage to Felsenstein 1981, or why are there so few/many species?. Evolution; International Journal of Organic Evolution, 2021, 75, 978-988.	2.3	13
160	Diversity and Mechanisms of Genomic Adaptation in Penicillium. , 2016, , 27-42.		13
161	Maintenance of Sex‣inked Deleterious Alleles by Selfing and Group Selection in Metapopulations of the Phytopathogenic Fungus Microbotryum violaceum. American Naturalist, 2005, 165, 577-589.	2.1	12
162	No Evidence of Reproductive Character Displacement between Two Sister Fungal Species Causing Anther Smut Disease in Silene. International Journal of Plant Sciences, 2010, 171, 847-859.	1.3	12

#	Article	IF	CITATIONS
163	Differential Gene Expression between Fungal Mating Types Is Associated with Sequence Degeneration. Genome Biology and Evolution, 2020, 12, 243-258.	2.5	11
164	Congruent population genetic structures and divergence histories in antherâ€smut fungi and their host plants <i>Silene italica</i> and the <i>Silene nutans</i> species complex. Molecular Ecology, 2020, 29, 1154-1172.	3.9	11
165	Population Genomics Reveals Molecular Determinants of Specialization to Tomato in the Polyphagous Fungal Pathogen <i>Botrytis cinerea</i> in France. Phytopathology, 2021, 111, 2355-2366.	2.2	11
166	Onset and stepwise extensions of recombination suppression are common in matingâ€ŧype chromosomes of <i>Microbotryum</i> antherâ€smut fungi. Journal of Evolutionary Biology, 2022, 35, 1619-1634.	1.7	11
167	Sexâ€specific effect of <i>Microbotryum violaceum</i> (Uredinales) spores on healthy plants of the gynodioecious <i>Gypsophila repens</i> (Caryophyllaceae). American Journal of Botany, 2005, 92, 896-900.	1.7	10
168	Antagonistic pleiotropy may help population-level selection in maintaining genetic polymorphism for transmission rate in a model phytopathogenic fungus. Heredity, 2007, 98, 45-52.	2.6	9
169	Bacterial cooperation controlled by mobile elements: kin selection versus infectivity. Heredity, 2011, 107, 277-278.	2.6	9
170	Lower prevalence but similar fitness in a parasitic fungus at higher radiation levels near Chernobyl. Molecular Ecology, 2016, 25, 3370-3383.	3.9	9
171	Fungi as a Source of Food. , 0, , 1063-1085.		9
172	Sympatry and interference of divergent Microbotryum pathogen species. Ecology and Evolution, 2019, 9, 5457-5467.	1.9	9
173	Threat to Asian wild apple trees posed by gene flow from domesticated apple trees and their "pestified― pathogens. Molecular Ecology, 2020, 29, 4925-4941.	3.9	9
174	Polymorphic Microsatellite Markers for the Tetrapolar Anther-Smut Fungus Microbotryum saponariae Based on Genome Sequencing. PLoS ONE, 2016, 11, e0165656.	2.5	9
175	Tempo of Degeneration Across Independently Evolved Nonrecombining Regions. Molecular Biology and Evolution, 2022, 39, .	8.9	9
176	The integrative taxonomy of <i> Beauveria asiatica</i> and <i> B. bassiana</i> species complexes with whole-genome sequencing, morphometric and chemical analyses. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2021, 47, 136-150.	4.4	7
177	Massive gene swamping among cheese-making Penicillium fungi. Microbial Cell, 2014, 1, 107-109.	3.2	7
178	Common sex-linked deleterious alleles in a plant parasitic fungus alter infection success but show no pleiotropic advantage. Journal of Evolutionary Biology, 2006, 19, 970-980.	1.7	6
179	In response to comment on â€ [~] A congruence index for testing topological similarity between trees'. Bioinformatics, 2009, 25, 150-151.	4.1	6
180	The impact of genome defense on mobile elements in Microbotryum. Genetica, 2010, 138, 313-319.	1.1	6

#	Article	IF	CITATIONS
181	The taxonomy of the model filamentous fungus Podospora anserina. MycoKeys, 2020, 75, 51-69.	1.9	6
182	Multiple infections, relatedness and virulence in the antherâ€smut fungus castrating <i>Saponaria</i> plants. Molecular Ecology, 2018, 27, 4947-4959.	3.9	5
183	Antherâ€smut fungi from more contaminated sites in Chernobyl show lower infection ability and lower viability following experimental irradiation. Ecology and Evolution, 2020, 10, 6409-6420.	1.9	5
184	Genetic diversity and population structure analyses in the Alpine plum (Prunus brigantina Vill.) confirm its affiliation to the Armeniaca section. Tree Genetics and Genomes, 2021, 17, 1.	1.6	5
185	Epidemiology and Evolution ofÂFungal Pathogens in Plants andÂAnimals. , 2017, , 71-98.		4
186	NATIVE SUPERCOLONIES OF UNRELATED INDIVIDUALS IN THE INVASIVE ARGENTINE ANT. Evolution; International Journal of Organic Evolution, 2006, 60, 782.	2.3	3
187	Codon models applied to the study of fungal genomes. , 2012, , 164-186.		2
188	EXPERIMENTAL DEMONSTRATION OF A CAUSAL RELATIONSHIP BETWEEN HETEROGENEITY OF SELECTION AND GENETIC DIFFERENTIATION IN QUANTITATIVE TRAITS. Evolution; International Journal of Organic Evolution, 2004, 58, 1434.	2.3	1
189	Isolation of seven polymorphic microsatellite loci, using an enrichment protocol, in the high Andean Asteraceous Chaetanthera pusilla. Molecular Ecology Notes, 2004, 4, 462-464.	1.7	0
190	5. All paths lead to Rome: Evolutionary convergence and divergence of K+ channel blocking toxins. Toxicon, 2014, 91, 166.	1.6	0
191	News of the Société Botanique de France. Acta Botanica Gallica, 2014, 161, 11-11.	0.9	0
192	Identification of distinct YX-like loci for sex determination and self-incompatibility in an and rodioecious shrub. Peer Community in Genomics, 0, , .	0.0	0
193	Dating nodes in a phylogeny using inferred horizontal gene transfers. Peer Community in Evolutionary Biology, 2018, , 100037.	0.0	0
194	Large-scale geography survey provides insights into the colonization history of a major aphid pest on its cultivated apple host in Europe, North America and North Africa. , 0, 1, .		0