Jordy Davelaar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3681374/publications.pdf

Version: 2024-02-01

172457 223800 9,241 46 29 46 citations h-index g-index papers 46 46 46 3261 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L1.	8.3	2,264
2	First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophysical Journal Letters, 2019, 875, L6.	8.3	897
3	First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophysical Journal Letters, 2019, 875, L5.	8.3	814
4	First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L4.	8.3	806
5	First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophysical Journal Letters, 2019, 875, L2.	8.3	618
6	First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophysical Journal Letters, 2022, 930, L12.	8.3	568
7	First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophysical Journal Letters, 2019, 875, L3.	8.3	519
8	First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophysical Journal Letters, 2021, 910, L13.	8.3	297
9	First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophysical Journal Letters, 2021, 910, L12.	8.3	215
10	First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophysical Journal Letters, 2022, 930, L17.	8.3	215
11	Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Physical Review Letters, 2020, 125, 141104.	7. 8	190
12	First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophysical Journal Letters, 2022, 930, L16.	8.3	187
13	The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophysical Journal, Supplement Series, 2019, 243, 26.	7.7	175
14	First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophysical Journal Letters, 2022, 930, L14.	8.3	163
15	First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophysical Journal Letters, 2022, 930, L13.	8.3	142
16	First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophysical Journal Letters, 2022, 930, L15.	8.3	137
17	Constraints on black-hole charges with the 2017 EHT observations of M87*. Physical Review D, 2021, 103, .	4.7	126
18	Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophysical Journal Letters, 2021, 910, L14.	8.3	67

#	Article	IF	CITATIONS
19	Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nature Astronomy, 2021, 5, 1017-1028.	10.1	65
20	Modeling non-thermal emission from the jet-launching region of M 87 with adaptive mesh refinement. Astronomy and Astrophysics, 2019, 632, A2.	5.1	61
21	Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2021, 911, L11.	8.3	56
22	Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astronomy and Astrophysics, 2020, 640, A69.	5.1	54
23	Constrained transport and adaptive mesh refinement in the Black Hole Accretion Code. Astronomy and Astrophysics, 2019, 629, A61.	5.1	51
24	Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope. Astrophysical Journal, 2020, 901, 67.	4.5	51
25	THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophysical Journal, 2020, 897, 139.	4.5	47
26	Verification of Radiative Transfer Schemes for the EHT. Astrophysical Journal, 2020, 897, 148.	4.5	44
27	The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophysical Journal, 2021, 912, 35.	4.5	43
28	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2022, 930, L19.	8.3	43
29	State-of-the-art energetic and morphological modelling of the launching site of the M87 jet. Nature Astronomy, 2022, 6, 103-108.	10.1	33
30	Kink Instability: Evolution and Energy Dissipation in Relativistic Force-free Nonrotating Jets. Astrophysical Journal, 2019, 884, 39.	4.5	26
31	Particle Acceleration in Kink-unstable Jets. Astrophysical Journal Letters, 2020, 896, L31.	8.3	24
32	Visibility of black hole shadows in low-luminosity AGN. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4722-4747.	4.4	21
33	Fuzzball Shadows: Emergent Horizons from Microstructure. Physical Review Letters, 2021, 127, 171601.	7.8	21
34	Selective Dynamical Imaging of Interferometric Data. Astrophysical Journal Letters, 2022, 930, L18.	8.3	21
35	Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI. Astrophysical Journal Letters, 2022, 930, L21.	8.3	20
36	A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. Astrophysical Journal Letters, 2022, 930, L20.	8.3	20

#	Article	IF	CITATIONS
37	Observing supermassive black holes in virtual reality. Computational Astrophysics and Cosmology, 2018, 5, .	22.7	18
38	Black hole parameter estimation with synthetic very long baseline interferometry data from the ground and from space. Astronomy and Astrophysics, 2021, 650, A56.	5.1	18
39	SYMBA: An end-to-end VLBI synthetic data generation pipeline. Astronomy and Astrophysics, 2020, 636, A5.	5.1	18
40	Deep Horizon: A machine learning network that recovers accreting black hole parameters. Astronomy and Astrophysics, 2020, 636, A94.	5.1	17
41	THEZA: TeraHertz Exploration and Zooming-in for Astrophysics. Experimental Astronomy, 2021, 51, 559-594.	3.7	17
42	The science case and challenges of space-borne sub-millimeter interferometry. Acta Astronautica, 2022, 196, 314-333.	3.2	15
43	Self-lensing flares from black hole binaries: General-relativistic ray tracing of black hole binaries. Physical Review D, 2022, 105, .	4.7	15
44	Self-Lensing Flares from Black Hole Binaries: Observing Black Hole Shadows via Light Curve Tomography. Physical Review Letters, 2022, 128, .	7.8	9
45	MeqSilhouette v2: spectrally resolved polarimetric synthetic data generation for the event horizon telescope. Monthly Notices of the Royal Astronomical Society, 2022, 512, 490-504.	4.4	7
46	The Variability of the Black Hole Image in M87 at the Dynamical Timescale. Astrophysical Journal, 2022, 925, 13.	4.5	6