Judit Makk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/367896/publications.pdf

Version: 2024-02-01

		471509	580821
35	677	17	25 g-index
papers	citations	h-index	g-index
35	35	35	848
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biofilm Bacterial Communities Inhabiting the Cave Walls of the Buda Thermal Karst System, Hungary. Geomicrobiology Journal, 2012, 29, 611-627.	2.0	49
2	Cave bacteria-induced amorphous calcium carbonate formation. Scientific Reports, 2020, 10, 8696.	3.3	47
3	Algological and bacteriological investigations on reed periphyton in Lake Velencei, Hungary. Hydrobiologia, 2003, 506-509, 549-557.	2.0	45
4	Texture and type of polymer fiber carrier determine bacterial colonization and biofilm properties in wastewater treatment. Chemical Engineering Journal, 2015, 264, 824-834.	12.7	42
5	Silver- and sulfadiazine-loaded nanostructured silica materials as potential replacement of silver sulfadiazine. Journal of Materials Chemistry B, 2014, 2, 6283-6292.	5.8	41
6	Chloroparva pannonica gen. et sp. nov. (Trebouxiophyceae, Chlorophyta) – a new picoplanktonic green alga from a turbid, shallow soda pan. Phycologia, 2011, 50, 1-10.	1.4	37
7	Cellulomonas phragmiteti sp. nov., a cellulolytic bacterium isolated from reed (Phragmites australis) periphyton in a shallow soda pond. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 1662-1666.	1.7	31
8	Phylogeny of six naviculoid diatoms based on 18S rDNA sequences International Journal of Systematic and Evolutionary Microbiology, 2001, 51, 1581-1586.	1.7	28
9	Microbiological investigation of an industrial ultra pure supply water plant using cultivation-based and cultivation-independent methods. Water Research, 2010, 44, 6124-6132.	11.3	26
10	Arenimonas subflava sp. nov., isolated from a drinking water network, and emended description of the genus Arenimonas. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1915-1921.	1.7	26
11	Sequential colonization by river periphyton analysed by microscopy and molecular fingerprinting. Freshwater Biology, 2008, 53, 1359-1371.	2.4	22
12	Tahibacter aquaticus gen. nov., sp. nov., a new gammaproteobacterium isolated from the drinking water supply system of Budapest (Hungary). Systematic and Applied Microbiology, 2011, 34, 110-115.	2.8	22
13	Diversity and morphological structure of bacterial communities inhabiting the Diana-Hygieia Thermal Spring (Budapest, Hungary). Acta Microbiologica Et Immunologica Hungarica, 2014, 61, 329-346.	0.8	20
14	Radioactive environment adapted bacterial communities constituting the biofilms of hydrothermal spring caves (Budapest, Hungary). Journal of Environmental Radioactivity, 2019, 203, 8-17.	1.7	20
15	Short-term colonization sequence of periphyton on glass slides in a large river (River Danube, near) Tj ETQq $1\ 1\ 0$.	.784314 rg	gBT /Overlock
16	Deinococcus budaensis sp. nov., a mesophilic species isolated from a biofilm sample of a hydrothermal spring cave. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 5345-5351.	1.7	19
17	Brevundimonas balnearis sp. nov., isolated from the well water of a thermal bath. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 1033-1038.	1.7	19
18	Nocardioides hungaricus sp. nov., isolated from a drinking water supply system. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 549-553.	1.7	16

#	Article	IF	Citations
19	Phenotypic characterization and molecular taxonomic studies on Bacillus and related isolates from Phragmites australis periphyton. Aquatic Botany, 2007, 86, 243-252.	1.6	15
20	Biofilm forming bacteria and archaea in thermal karst springs of Gellért Hill discharge area (Hungary). Journal of Basic Microbiology, 2018, 58, 928-937.	3.3	14
21	Comparison of bacterial and archaeal communities from different habitats of the hypogenic Molnár János Cave of the Buda Thermal Karst System (Hungary). Journal of Cave and Karst Studies, 2017, 79, 113-121.	0.6	14
22	Phylogenetic Diversity of Bacterial Communities Associated with Sulfurous Karstic Well Waters of a Hungarian Spa. Geomicrobiology Journal, 2012, 29, 101-113.	2.0	13
23	Thermophilic prokaryotic communities inhabiting the biofilm and well water of a thermal karst system located in Budapest (Hungary). Extremophiles, 2015, 19, 787-797.	2.3	12
24	New observations about the fertilisation capacity and latency time of sperm inseminated into the ovary of African catfish (Clarias gariepinus), an oviparous modelfish. Aquaculture, 2020, 522, 735109.	3.5	12
25	Periphhyton and phytoplankton in the Soroksár-Danube in Hungary. I.Periphytic algae on reed stems. Acta Botanica Hungarica, 2001, 43, 13-35.	0.3	9
26	Critical point analysis and biocide treatment in a microbiologically contaminated water purification system of a power plant. SN Applied Sciences, 2019, 1, 1.	2.9	9
27	Bacterial communities in the collection and chlorinated distribution sections of a drinking water system in Budapest, Hungary. Journal of Basic Microbiology, 2014, 54, 729-738.	3.3	8
28	In situ modelling of biofilm formation in a hydrothermal spring cave. Scientific Reports, 2020, 10, 21733.	3.3	7
29	Deinococcus fonticola sp. nov., isolated from a radioactive thermal spring in Hungary. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 1724-1730.	1.7	7
30	Integration of In Situ Experiments and Numerical Simulations to Reveal the Physicochemical Circumstances of Organic and Inorganic Precipitation at a Thermal Spring. Aquatic Geochemistry, 2018, 24, 231-255.	1.3	6
31	Spatial and temporal changes of bacterial communities inhabiting the well waters of Harkány spa. Acta Microbiologica Et Immunologica Hungarica, 2013, 60, 329-343.	0.8	5
32	Bicomponent drug formulation for simultaneous release of Ag and sulfadiazine supported on nanosized zeolite Beta. Nano Structures Nano Objects, 2020, 24, 100562.	3.5	5
33	Calcium Carbonate Precipitating Cultivable Bacteria from Different Speleothems of Karst Caves. Geomicrobiology Journal, 2022, 39, 107-122.	2.0	5
34	Phylogenetic diversity of bacterial communities inhabiting the sediment of Lake HévÃz — A comparison of cultivation and cloning. Acta Microbiologica Et Immunologica Hungarica, 2013, 60, 211-235.	0.8	3
35	Bacterial and abiogenic carbonates formed in caves–no vital effect on clumped isotope compositions. PLoS ONE, 2021, 16, e0245621.	2.5	3