Chiara Di Pietro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3678902/publications.pdf Version: 2024-02-01

<u>Chiada Di Dietro</u>

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nature Genetics, 2017, 49, 1231-1238.	21.4	216
3	Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nature Genetics, 2015, 47, 969-978.	21.4	137
4	Reduction of Hepatitis C Virus NS5A Hyperphosphorylation by Selective Inhibition of Cellular Kinases Activates Viral RNA Replication in Cell Culture. Journal of Virology, 2004, 78, 13306-13314.	3.4	128
5	A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nature Communications, 2017, 8, 886.	12.8	116
6	GPR37 associates with the dopamine transporter to modulate dopamine uptake and behavioral responses to dopaminergic drugs. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9846-9851.	7.1	99
7	EuroPhenome: a repository for high-throughput mouse phenotyping data. Nucleic Acids Research, 2010, 38, D577-D585.	14.5	75
8	The α Isoform of Protein Kinase CKI Is Responsible for Hepatitis C Virus NS5A Hyperphosphorylation. Journal of Virology, 2006, 80, 11305-11312.	3.4	71
9	Precocious cerebellum development and improved motor functions in mice lacking the astrocyte cilium-, patched 1-associated Gpr37l1 receptor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16486-16491.	7.1	59
10	Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nature Communications, 2018, 9, 288.	12.8	59
11	Induction of macroautophagy by overexpression of the Parkinson's diseaseâ€associated GPR37 receptor. FASEB Journal, 2009, 23, 1978-1987.	0.5	49
12	Absence of the GPR37/PAEL receptor impairs striatal Akt and ERK2 phosphorylation, ΔFosB expression, and conditioned place preference to amphetamine and cocaine. FASEB Journal, 2011, 25, 2071-2081.	0.5	40
13	Identification of genes required for eye development by high-throughput screening of mouse knockouts. Communications Biology, 2018, 1, 236.	4.4	37
14	Mice lacking the Parkinson's related <scp>GPR37</scp> / <scp>PAEL</scp> receptor show nonâ€notor behavioral phenotypes: age and gender effect. Genes, Brain and Behavior, 2013, 12, 465-477.	2.2	34
15	High-throughput mouse phenotyping. Methods, 2011, 53, 394-404.	3.8	31
16	A Dynamic Splicing Program Ensures Proper Synaptic Connections in the Developing Cerebellum. Cell Reports, 2020, 31, 107703.	6.4	25
17	Modulation of Dhh signaling and altered Sertoli cell function in mice lacking the GPR37â€prosaposin receptor. FASEB Journal, 2015, 29, 2059-2069	0.5	24
18	Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma. Cellular and Molecular Neurobiology, 2017, 37, 145-154.	3.3	22

CHIARA DI PIETRO

#	Article	IF	CITATIONS
19	Genetic ablation of Gpr37l1 delays tumor occurrence in Ptch1 mouse models of medulloblastoma. Experimental Neurology, 2019, 312, 33-42.	4.1	17
20	Macroautophagy of the GPR37 orphan receptor and Parkinson disease-associated neurodegeneration. Autophagy, 2009, 5, 741-742.	9.1	13
21	Identification of the GlialCAM interactome: the G protein-coupled receptors GPRC5B and GPR37L1 modulate megalencephalic leukoencephalopathy proteins. Human Molecular Genetics, 2021, 30, 1649-1665.	2.9	12
22	Gpr37l1/prosaposin receptor regulates Ptch1 trafficking, Shh production, and cell proliferation in cerebellar primary astrocytes. Journal of Neuroscience Research, 2021, 99, 1064-1083.	2.9	10
23	Atm reactivation reverses ataxia telangiectasia phenotypes in vivo. Cell Death and Disease, 2018, 9, 314.	6.3	9
24	Circulating miRNAs in Small Extracellular Vesicles Secreted by a Human Melanoma Xenograft in Mouse Brains. Cancers, 2020, 12, 1635.	3.7	9
25	Anomalies in Dopamine Transporter Expression and Primary Cilium Distribution in the Dorsal Striatum of a Mouse Model of Niemann-Pick C1 Disease. Frontiers in Cellular Neuroscience, 2019, 13, 226.	3.7	8
26	Role of Lamin A/C as Candidate Biomarker of Aggressiveness and Tumorigenicity in Glioblastoma Multiforme. Biomedicines, 2021, 9, 1343.	3.2	8
27	Mouse Mutants of Gpr37 and Gpr37l1 Receptor Genes: Disease Modeling Applications. International Journal of Molecular Sciences, 2022, 23, 4288.	4.1	3
28	A Quantitative Assay for Ca2+ Uptake through Normal and Pathological Hemichannels. International Journal of Molecular Sciences, 2022, 23, 7337.	4.1	3
29	Transmembrane Protein TMEM230, a Target of Clioblastoma Therapy. Frontiers in Cellular Neuroscience, 2021, 15, 703431.	3.7	1