Mayumi Ueta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3678094/publications.pdf

Version: 2024-02-01

117625 110387 4,913 145 34 64 citations g-index h-index papers 145 145 145 3276 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens–Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics, 2008, 9, 1617-1622.	1.3	368
2	New Grading System for the Evaluation of Chronic Ocular Manifestations in Patients with Stevens–Johnson Syndrome. Ophthalmology, 2007, 114, 1294-1302.	5.2	241
3	<i>HLAâ€B*1511</i> is a risk factor for carbamazepineâ€induced Stevensâ€johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia, 2010, 51, 2461-2465.	5.1	217
4	Acute and Chronic Ophthalmic Involvement in Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis – A Comprehensive Review and Guide to Therapy. II. Ophthalmic Disease. Ocular Surface, 2016, 14, 168-188.	4.4	163
5	A whole-genome association study of major determinants for allopurinol-related Stevens–Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Pharmacogenomics Journal, 2013, 13, 60-69.	2.0	160
6	Diagnosis and Treatment of Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis with Ocular Complications. Ophthalmology, 2009, 116, 685-690.	5. 2	144
7	Intracellularly Expressed TLR2s and TLR4s Contribution to an Immunosilent Environment at the Ocular Mucosal Epithelium. Journal of Immunology, 2004, 173, 3337-3347.	0.8	143
8	Triggering of TLR3 by polyl:C in human corneal epithelial cells to induce inflammatory cytokines. Biochemical and Biophysical Research Communications, 2005, 331, 285-294.	2.1	138
9	Successful Treatment of Stevens-Johnson Syndrome with Steroid Pulse Therapy at Disease Onset. American Journal of Ophthalmology, 2009, 147, 1004-1011.e1.	3. 3	133
10	Visual Improvement after Cultivated Oral Mucosal Epithelial Transplantation. Ophthalmology, 2013, 120, 193-200.	5. 2	126
11	Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis – A Comprehensive Review and Guide to Therapy. I. Systemic Disease. Ocular Surface, 2016, 14, 2-19.	4.4	112
12	Immunosuppressive properties of human amniotic membrane for mixed lymphocyte reaction. Clinical and Experimental Immunology, 2002, 129, 464-470.	2.6	109
13	Predictive Factors Associated With Acute Ocular Involvement in Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. American Journal of Ophthalmology, 2015, 160, 228-237.e2.	3.3	104
14	Toll-like receptor 3 gene polymorphisms in Japanese patients with Stevens-Johnson syndrome. British Journal of Ophthalmology, 2007, 91, 962-965.	3.9	99
15	Innate immunity of the ocular surface. Brain Research Bulletin, 2010, 81, 219-228.	3.0	96
16	Prostaglandin E2–EP3 signaling suppresses skin inflammation in murine contact hypersensitivity. Journal of Allergy and Clinical Immunology, 2009, 124, 809-818.e2.	2.9	83
17	Independent strong association of HLA-A*02:06 and HLA-B*44:03 with cold medicine-related Stevens-Johnson syndrome with severe mucosal involvement. Scientific Reports, 2014, 4, 4862.	3.3	83
18	Ocular surface inflammation is regulated by innate immunity. Progress in Retinal and Eye Research, 2012, 31, 551-575.	15.5	80

#	Article	IF	CITATIONS
19	Cultivated oral mucosal epithelial transplantation for persistent epithelial defect in severe ocular surface diseases with acute inflammatory activity. Acta Ophthalmologica, 2014, 92, e447-53.	1.1	79
20	Strong Association Between HLA-A*0206 and Stevens-Johnson Syndrome in the Japanese. American Journal of Ophthalmology, 2007, 143, 367-368.	3.3	74
21	Stevens-Johnson syndrome: The role of an ophthalmologist. Survey of Ophthalmology, 2016, 61, 369-399.	4.0	65
22	Specific HLA types are associated with antiepileptic drug-induced Stevens–Johnson syndrome and toxic epidermal necrolysis in Japanese subjects. Pharmacogenomics, 2013, 14, 1821-1831.	1.3	60
23	Association between prostaglandin E receptor 3 polymorphisms and Stevens-Johnson syndrome identified by means of a genome-wide association study. Journal of Allergy and Clinical Immunology, 2010, 126, 1218-1225.e10.	2.9	59
24	Trans-ethnic study confirmed independent associations of HLA-A*02:06 and HLA-B*44:03 with cold medicine-related Stevens-Johnson syndrome with severe ocular surface complications. Scientific Reports, 2014, 4, 5981.	3.3	59
25	Prostaglandin E receptor subtype EP3 in conjunctival epithelium regulates late-phase reaction of experimental allergic conjunctivitis. Journal of Allergy and Clinical Immunology, 2009, 123, 466-471.e5.	2.9	55
26	IKZF1, a new susceptibility gene for cold medicine–related Stevens-Johnson syndrome/toxic epidermal necrolysis with severe mucosal involvement. Journal of Allergy and Clinical Immunology, 2015, 135, 1538-1545.e17.	2.9	55
27	<scp>HLA</scp> Alleles and <i><scp>CYP</scp>2C9*3</i> as Predictors of Phenytoin Hypersensitivity in East Asians. Clinical Pharmacology and Therapeutics, 2019, 105, 476-485.	4.7	53
28	Spontaneous Ocular Surface Inflammation and Goblet Cell Disappearance in ll̂ºBl̂¶ Gene-Disrupted Mice., 2005, 46, 579.		52
29	Innate Immunity of the Ocular Surface and Ocular Surface Inflammatory Disorders. Cornea, 2008, 27, S31-S40.	1.7	51
30	Association of IL4R polymorphisms with Stevens-Johnson syndrome. Journal of Allergy and Clinical Immunology, 2007, 120, 1457-1459.	2.9	48
31	The Role of Systemic Immunomodulatory Treatment and Prognostic Factors on Chronic Ocular Complications in Stevens–Johnson Syndrome. Ophthalmology, 2015, 122, 254-264.	5.2	48
32	Association of Combined IL-13/IL-4R Signaling Pathway Gene Polymorphism with Stevens-Johnson Syndrome Accompanied by Ocular Surface Complications. , 2008, 49, 1809.		47
33	HLA class I and II gene polymorphisms in Stevens-Johnson syndrome with ocular complications in Japanese. Molecular Vision, 2008, 14, 550-5.	1.1	47
34	Association of Fas Ligand gene polymorphism with Stevens-Johnson syndrome. British Journal of Ophthalmology, 2008, 92, 989-991.	3.9	46
35	A new dry eye mouse model produced by exorbital and intraorbital lacrimal gland excision. Scientific Reports, 2018, 8, 1483.	3.3	43
36	SJS/TEN 2019: From science to translation. Journal of Dermatological Science, 2020, 98, 2-12.	1.9	41

#	Article	IF	CITATIONS
37	The effect of topical application of 0.15% ganciclovir gel on cytomegalovirus corneal endotheliitis. British Journal of Ophthalmology, 2017, 101, 114-119.	3.9	38
38	Toll-like receptor 3 enhances late-phase reaction of experimental allergic conjunctivitis. Journal of Allergy and Clinical Immunology, 2009, 123, 1187-1189.e2.	2.9	36
39	Ocular Surface Inflammation Mediated by Innate Immunity. Eye and Contact Lens, 2010, 36, 269-281.	1.6	36
40	Toll-Like Receptor 3 Increases Allergic and Irritant Contact Dermatitis. Journal of Investigative Dermatology, 2015, 135, 411-417.	0.7	33
41	Polyclonality of Staphylococcus epidermidis residing on the healthy ocular surface. Journal of Medical Microbiology, 2007, 56, 77-82.	1.8	32
42	Rebamipide Suppresses Polyl:C-Stimulated Cytokine Production in Human Conjunctival Epithelial Cells. Journal of Ocular Pharmacology and Therapeutics, 2013, 29, 688-693.	1.4	32
43	Severe Dry Eye With Combined Mechanisms is Involved in the Ocular Sequelae of SJS/TEN at the Chronic Stage. , 2018, 59, DES80.		32
44	HLA-A*0206 with TLR3 Polymorphisms Exerts More than Additive Effects in Stevens-Johnson Syndrome with Severe Ocular Surface Complications. PLoS ONE, 2012, 7, e43650.	2.5	32
45	The nationwide epidemiological survey of Stevens-Johnson syndrome and toxic epidermal necrolysis in Japan, 2016-2018. Journal of Dermatological Science, 2020, 100, 175-182.	1.9	31
46	Prostaglandin E Receptor Subtype EP3 Expression in Human Conjunctival Epithelium and Its Changes in Various Ocular Surface Disorders. PLoS ONE, 2011, 6, e25209.	2.5	30
47	Association between HLA-B*44:03-HLA-C*07:01 haplotype and cold medicine-related Stevens-Johnson syndrome with severe ocular complications in Thailand. British Journal of Ophthalmology, 2018, 102, 1303-1307.	3.9	30
48	Diagnostic efficacy of real-time PCR for ocular cytomegalovirus infections. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 2413-2420.	1.9	30
49	Human conjunctival epithelial cells express functional Toll-like receptor 5. British Journal of Ophthalmology, 2008, 92, 411-416.	3.9	29
50	Human Leukocyte Antigen Class I Genes Associated With Stevens-Johnson Syndrome and Severe Ocular Complications Following Use of Cold Medicine in a Brazilian Population. JAMA Ophthalmology, 2017, 135, 355.	2.5	29
51	Gene-expression analysis of polyl:C-stimulated primary human conjunctival epithelial cells. British Journal of Ophthalmology, 2010, 94, 1528-1532.	3.9	28
52	Epistatic interaction between Toll-like receptor 3 (TLR3) and prostaglandin E receptor 3 (PTGER3) genes. Journal of Allergy and Clinical Immunology, 2012, 129, 1413-1416.e11.	2.9	28
53	Results of Detailed Investigations Into Stevens-Johnson Syndrome With Severe Ocular Complications. , 2018, 59, DES183.		27
54	Expression of the interleukin-4 receptor \hat{A} in human conjunctival epithelial cells. British Journal of Ophthalmology, 2010, 94, 1239-1243.	3.9	24

#	Article	IF	Citations
55	Human leucocyte antigen association of patients with Stevens-Johnson syndrome/toxic epidermal necrolysis with severe ocular complications in Han Chinese. British Journal of Ophthalmology, 2022, 106, 610-615.	3.9	24
56	Human corneal epithelial cells respond to ocular-pathogenic, but not to nonpathogenic-flagellin. Biochemical and Biophysical Research Communications, 2006, 347, 238-247.	2.1	23
57	Prostaglandin E2 suppresses polyinosine-polycytidylic acid (polyl:C)-stimulated cytokine production via prostaglandin E2 receptor (EP) 2 and 3 in human conjunctival epithelial cells. British Journal of Ophthalmology, 2011, 95, 859-863.	3.9	22
58	Genetic Predisposition to Stevens–Johnson Syndrome With Severe Ocular Surface Complications. Cornea, 2015, 34, S158-S165.	1.7	21
59	Cytokine storm arising on the ocular surface in a patient with Stevens-Johnson syndrome. British Journal of Ophthalmology, 2011, 95, 1030-1031.	3.9	20
60	Contribution of IPS-1 to polyl:C-induced cytokine production in conjunctival epithelial cells. Biochemical and Biophysical Research Communications, 2011, 404, 419-423.	2.1	19
61	HLA-A*02:06 and PTGER3 polymorphism exert additive effects in cold medicine-related Stevens–Johnson syndrome with severe ocular complications. Human Genome Variation, 2015, 2, 15023.	0.7	19
62	Stat6-Independent Tissue Inflammation Occurs Selectively on the Ocular Surface and Perioral Skin of lîºBî¶ ^{â^'/â^'} Mice., 2008, 49, 3387.		18
63	Genome-wide association study using the ethnicity-specific Japonica array: identification of new susceptibility loci for cold medicine-related Stevens–Johnson syndrome with severe ocular complications. Journal of Human Genetics, 2017, 62, 485-489.	2.3	18
64	The role of toll-like receptor 3 in chronic contact hypersensitivity induced by repeated elicitation. Journal of Dermatological Science, 2017, 88, 184-191.	1.9	18
65	Association of human antigen class I genes with cold medicine-related Stevens-Johnson syndrome with severe ocular complications in a Korean population. British Journal of Ophthalmology, 2019, 103, 573-576.	3.9	18
66	Expression of interleukin-4 receptor $\hat{l}\pm$ in human corneal epithelial cells. Japanese Journal of Ophthalmology, 2011, 55, 405-410.	1.9	17
67	Analysis of Ocular Manifestation and Genetic Association of Allopurinol-Induced Stevens–Johnson Syndrome and Toxic Epidermal Necrolysis in South Korea. Cornea, 2016, 35, 199-204.	1.7	17
68	Downregulation of interferon- \hat{l}^3 -induced protein 10 in the tears of patients with Stevens-Johnson syndrome with severe ocular complications in the chronic stage. BMJ Open Ophthalmology, 2017, 1, e000073.	1.6	17
69	Association of HLA class I and II gene polymorphisms with acetaminophen-related Stevens–Johnson syndrome with severe ocular complications in Japanese individuals. Human Genome Variation, 2019, 6, 50.	0.7	17
70	Long-term Progression of Ocular Surface Disease in Stevens–Johnson Syndrome and Toxic Epidermal Necrolysis. Cornea, 2020, 39, 745-753.	1.7	17
71	Identification of HLA-A*02:06:01 as the primary disease susceptibility HLA allele in cold medicine-related Stevens-Johnson syndrome with severe ocular complications by high-resolution NGS-based HLA typing. Scientific Reports, 2019, 9, 16240.	3.3	16
72	Usefulness of a New Therapy Using Rebamipide Eyedrops in Patients with VKC/AKC Refractory to Conventional Anti-Allergic Treatments. Allergology International, 2014, 63, 75-81.	3.3	15

#	Article	IF	Citations
73	Drugs causing severe ocular surface involvements in Japanese patients with Stevens–Johnson syndrome/toxic epidermal necrolysis. Allergology International, 2015, 64, 379-381.	3.3	15
74	Association of Human Leukocyte Antigen Class 1 genes with Stevens Johnson Syndrome with severe ocular complications in an Indian population. Scientific Reports, 2017, 7, 15960.	3.3	15
75	Stevens-Johnson syndrome/toxic epidermal necrolysis with severe ocular complications. Expert Review of Clinical Immunology, 2020, 16, 285-291.	3.0	15
76	Predictive biomarkers for the progression of ocular complications in chronic Stevens-Johnson syndrome and toxic Eeidermal necrolysis. Scientific Reports, 2020, 10, 18922.	3.3	14
77	Development of eosinophilic conjunctival inflammation at late-phase reaction in mast cell–deficient mice. Journal of Allergy and Clinical Immunology, 2007, 120, 476-478.	2.9	13
78	Prostaglandin E receptor subtype EP3 downregulates TSLP expression in human conjunctival epithelium. British Journal of Ophthalmology, 2011, 95, 742-743.	3.9	12
79	Prostaglandin E2 Suppresses Poly I. Cornea, 2012, 31, 1294-1298.	1.7	12
80	<i>In Silico</i> Risk Assessment of HLA-A*02:06-Associated Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis Caused by Cold Medicine Ingredients. Journal of Toxicology, 2013, 2013, 1-6.	3.0	12
81	Mucocutaneous inflammation in the Ikaros Family Zinc Finger 1â€keratin 5–specific transgenic mice. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 395-404.	5.7	12
82	Characteristics of meibomian gland dysfunction in patients with Stevens–Johnson syndrome. Medicine (United States), 2019, 98, e16155.	1.0	12
83	HLA genotypes and cold medicine-induced Stevens–Johnson syndrome/toxic epidermal necrolysis with severe ocular complications: a systematic review and meta-analysis. Scientific Reports, 2020, 10, 10589.	3.3	12
84	Examination of Staphylococcus aureus on the Ocular Surface of Patients With Catarrhal Ulcers. Cornea, 2009, 28, 780-782.	1.7	10
85	Cold medicine-related Stevens–Johnson syndrome/toxic epidermal necrolysis with severe ocular complications—phenotypes and genetic predispositions. Taiwan Journal of Ophthalmology, 2016, 6, 108-118.	0.7	10
86	Influence of topical steroids on intraocular pressure in patients with atopic dermatitis. Allergology International, 2018, 67, 388-391.	3.3	10
87	Chronic ocular complications of Stevens-Johnson syndrome associated with causative medications in Korea. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 700-702.e2.	3.8	10
88	Effectiveness of photodynamic therapy with verteporfin combined with intrastromal bevacizumab for corneal neovascularization in Stevens–Johnson syndrome. International Ophthalmology, 2019, 39, 55-62.	1.4	10
89	Long-term outcome of cultivated oral mucosal epithelial transplantation for fornix reconstruction in chronic cicatrising diseases. British Journal of Ophthalmology, 2022, 106, 1355-1362.	3.9	10
90	Development of a simple genotyping method for the $\langle i \rangle$ HLA-A*31:01 $\langle i \rangle$ -tagging SNP in Japanese. Pharmacogenomics, 2015, 16, 1689-1699.	1.3	9

#	Article	IF	CITATIONS
91	Clinical trial to evaluate the therapeutic benefits of limbal-supported contact lens wear for ocular sequelae due to Stevens-Johnson syndrome/toxic epidermal necrolysis. Contact Lens and Anterior Eye, 2020, 43, 535-542.	1.7	9
92	Pathogenesis of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis With Severe Ocular Complications. Frontiers in Medicine, 2021, 8, 651247.	2.6	9
93	Regulation of Ocular Surface Inflammation by Prostaglandin E Receptor Subtype EP3. Cornea, 2010, 29, S57-S61.	1.7	8
94	Downregulation of Monocyte Chemoattractant Protein 1 Expression by Prostaglandin E ₂ in Human Ocular Surface Epithelium. JAMA Ophthalmology, 2012, 130, 249.	2.4	8
95	Upregulation of Toll-like receptor 5 expression in the conjunctival epithelium of various human ocular surface diseases. British Journal of Ophthalmology, 2014, 98, 1116-1119.	3.9	8
96	Stratum corneum Toll-like receptor 3 expressions correlate with the severity of atopic dermatitis lesions. Journal of Dermatological Science, 2019, 94, 354-357.	1.9	8
97	Downregulation of ILâ€8, ECP, and total IgE in the tears of patients with atopic keratoconjunctivitis treated with rebamipide eyedrops. Clinical and Translational Allergy, 2014, 4, 40.	3.2	7
98	Intravital imaging of the cellular dynamics of LysM-positive cells in a murine corneal suture model. British Journal of Ophthalmology, 2016, 100, 432-435.	3.9	7
99	Association of HLA polymorphisms and acetaminophen-related Steven-Johnson syndrome with severe ocular complications in Thai population. British Journal of Ophthalmology, 2022, 106, 884-888.	3.9	7
100	Regulation of gene expression by miRNA-455-3p, upregulated in the conjunctival epithelium of patients with Stevens–Johnson syndrome in the chronic stage. Scientific Reports, 2020, 10, 17239.	3.3	7
101	Difference in the plasma level of miRâ€628â€3p in atopic dermatitis patients with/without atopic keratoconjunctivitis. Immunity, Inflammation and Disease, 2021, 9, 1815-1819.	2.7	7
102	The Management of Severe Ocular Complications of Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Archives of Dermatology, 2009, 145, 1336.	1.4	6
103	Visualization of Intravital Immune Cell Dynamics After Conjunctival Surgery Using Multiphoton Microscopy., 2016, 57, 1207.		6
104	Expression of prostaglandin E2 receptor 3 in the eyelid epidermis of patients with Stevens-Johnson syndrome/toxic epidermal necrolysis. British Journal of Ophthalmology, 2020, 104, 1022-1027.	3.9	6
105	Regional heritability mapping identifies several novel loci (STAT4, ULK4, and KCNH5) for primary biliary cholangitis in the Japanese population. European Journal of Human Genetics, 2021, 29, 1282-1291.	2.8	6
106	Corticosteroid Pulse Therapy for Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis Patients With Acute Ocular Involvement. American Journal of Ophthalmology, 2021, 231, 194-199.	3.3	6
107	Oral Mucosal Epithelial Transplantation and Limbal-Rigid Contact Lens: A Therapeutic Modality for the Treatment of Severe Ocular Surface Disorders. Cornea, 2020, 39, S19-S27.	1.7	6
108	Ethnic Differences in the Association Between Human Leukocyte Antigen and Stevens-Johnson Syndrome. European Ophthalmic Review, 2009, 03, 15.	0.3	6

#	Article	IF	CITATIONS
109	Identification of a novel HLAâ€B allele, HLAâ€B*5904. Tissue Antigens, 2009, 73, 612-614.	1.0	5
110	Gene expression analysis of conjunctival epithelium of patients with Stevens-Johnson syndrome in the chronic stage. BMJ Open Ophthalmology, 2019, 4, e000254.	1.6	5
111	Association of IKZF1 SNPs in cold medicine-related Stevens–Johnson syndrome in Thailand. Clinical and Translational Allergy, 2019, 9, 61.	3.2	5
112	Human leukocyte antigen B*0702 is protective against ocular Stevens–Johnson syndrome/toxic epidermal necrolysis in the UK population. Scientific Reports, 2021, 11, 2928.	3.3	5
113	Japan: Diagnosis and Management of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis With Severe Ocular Complications. Frontiers in Medicine, 2021, 8, 657327.	2.6	5
114	Plasma Lipid Profiling of Patients with Chronic Ocular Complications Caused by Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis. PLoS ONE, 2016, 11, e0167402.	2.5	5
115	Findings by an International Collaboration on SJS/TEN With Severe Ocular Complications. Frontiers in Medicine, 2021, 8, 649661.	2.6	5
116	Prostaglandin E Receptor 4 Expression in Human Conjunctival Epithelium and Its Downregulation in Devastating Ocular Surface Inflammatory Disorders. JAMA Ophthalmology, 2010, 128, 1369.	2.4	4
117	Epistatic Interactions Associated with Stevens–Johnson Syndrome. Cornea, 2012, 31, S57-S62.	1.7	4
118	Folliculitis in Clinically "Quiet―Chronic Stevens-Johnson Syndrome. Ophthalmic Plastic and Reconstructive Surgery, 2014, 30, 80-82.	0.8	4
119	Human leukocyte antigen class I and II genes associated with dipyrone-related Stevens-Johnson syndrome and severe ocular complications in a Brazilian population. Ocular Surface, 2021, 20, 173-175.	4.4	4
120	Regulation of innate immune response by miR-628–3p upregulated in the plasma of Stevens-Johnson syndrome patients. Ocular Surface, 2021, 21, 174-177.	4.4	4
121	Innate immunity of the ocular surface. Japanese Journal of Ophthalmology, 2010, 54, 194-198.	1.9	3
122	Expression of prostaglandin E receptor subtype EP4 in conjunctival epithelium of patients with ocular surface disorders: case-control study. BMJ Open, 2012, 2, e001330.	1.9	3
123	Novel TACSTD2 mutation in gelatinous drop-like corneal dystrophy. Human Genome Variation, 2015, 2, 15047.	0.7	3
124	Stevensâ€Johnson syndrome and toxic epidermal necrolysis cases treated at our hospital over the past 10Âyears. Journal of Cutaneous Immunology and Allergy, 2019, 2, 25-30.	0.3	3
125	Distinctly regulated functions and mobilization of CD11c-positive cells elicited by TLR3- and IPS-1 signaling in the cornea. Immunology Letters, 2019, 206, 49-53.	2.5	3
126	Respiratory complications of Stevens-Johnson syndrome (SJS): 3 cases of SJS-induced obstructive bronchiolitis. Allergology International, 2020, 69, 465-467.	3.3	3

#	Article	IF	CITATIONS
127	Topical application of toll-like receptor 3 inhibitors ameliorates chronic allergic skin inflammation in mice. Journal of Dermatological Science, 2021, 101, 141-144.	1.9	3
128	Mapping of susceptible variants for cold medicine-related Stevens–Johnson syndrome by whole-genome resequencing. Npj Genomic Medicine, 2021, 6, 9.	3.8	3
129	Categorization of the Ocular Microbiome in Japanese Stevens–Johnson Syndrome Patients With Severe Ocular Complications. Frontiers in Cellular and Infection Microbiology, 2021, 11, 741654.	3.9	3
130	Multi-state model for predicting ocular progression in acute Stevens-Johnson syndrome/toxic epidermal necrolysis. PLoS ONE, 2021, 16, e0260730.	2.5	3
131	Limbal-Rigid Contact Lens Wear for the Treatment of Ocular Surface Disorders: A Review. Eye and Contact Lens, 2022, 48, 313-317.	1.6	3
132	Challenges in the management of bilateral eyelid closure in Stevens-Johnson Syndrome. American Journal of Ophthalmology Case Reports, 2022, 26, 101473.	0.7	2
133	Susceptibility Genes and HLA for Cold Medicine-Related SJS/TEN with SOC. Frontiers in Genetics, $0,13,.$	2.3	2
134	Spatio-temporal dual effects of lîºBî¶ dictates the caution on visual disturbance resulting from lîºBî¶ deficiency. Immunology Letters, 2010, 133, 115.	2.5	1
135	Antiâ€inflammatory effect of rebamipide on the ocular surface. Clinical and Translational Allergy, 2013, 3, P21.	3.2	1
136	HLA association with antipyretic analgesicsâ€induced Stevensâ€Johnson Syndrome/toxic epidermal necrolysis with severe ocular surface complications in japanese patients. Clinical and Translational Allergy, 2014, 4, P89.	3.2	1
137	Suppression of polyl:C-inducible gene expression by EP3 in murine conjunctival epithelium. Immunology Letters, 2014, 159, 73-75.	2.5	1
138	TLR3 and Inflammatory Skin Diseases: From Environmental Factors to Molecular Opportunities. , 2016, , 235-249.		1
139	Diagnostic efficacy of real-time PCR for ocular cytomegalovirus infections. , 2018, 256, 2413.		1
140	Editorial: The Updated Understanding of Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Frontiers in Medicine, 2021, 8, 811570.	2.6	1
141	Medication tendencies for inducing severe ocular surface symptoms in Japanese Stevensâ€Johnson Syndrome / toxic epidermal necrolysis patients. Clinical and Translational Allergy, 2014, 4, P88.	3.2	O
142	Data Sparsity in Study on Human Leukocyte Antigen Class I Genes Associated With Stevens-Johnson Syndrome and Severe Ocular Complications—Reply. JAMA Ophthalmology, 2017, 135, 894.	2.5	0
143	Reply: amniotic membrane transplantation in Stevens-Johnson syndrome. Survey of Ophthalmology, 2017, 62, 249-250.	4.0	0
144	Genetic susceptibility for Stevens-Johnson syndrome/Toxic epidermal necrolysis with mucosal involvements. Inflammation and Regeneration, 2013, 33, 249-260.	3.7	0

#	Article	IF	CITATIONS
145	HLA-A*02:06 and PTGER3 polymorphism exerts additive effects in cold medicine-related Stevens-Johnson syndrome with severe ocular complications in Japanese and Korean populations. Acta Ophthalmologica, 2015, 93, n/a-n/a.	1.1	0