
## Michael J Caplan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/367750/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | AMPK and Polycystic Kidney Disease Drug Development: An Interesting Off-Target Target. Frontiers in<br>Medicine, 2022, 9, 753418.                                            | 2.6 | 6         |
| 2  | Membrane phosphoinositides and renal epithelial cell polarity determination in the Xenopus pronephros <i>in vivo</i> . FASEB Journal, 2022, 36, .                            | 0.5 | 0         |
| 3  | Polycystin 1 ciliary localization is regulated by its aGPCR activity. FASEB Journal, 2022, 36, .                                                                             | 0.5 | 0         |
| 4  | Physiology and <i>Physiology</i> , 2021. Physiology, 2021, 36, 268-269.                                                                                                      | 3.1 | 0         |
| 5  | β3 adrenergic receptor as potential therapeutic target in ADPKD. Physiological Reports, 2021, 9, e15058.                                                                     | 1.7 | 7         |
| 6  | Mechanisms involved in AMPK-mediated deposition of tight junction components to the plasma membrane. American Journal of Physiology - Cell Physiology, 2020, 318, C486-C501. | 4.6 | 5         |
| 7  | A cut above (and below): Protein cleavage in the regulation of polycystin trafficking and signaling.<br>Cellular Signalling, 2020, 72, 109634.                               | 3.6 | 15        |
| 8  | Chloride channels regulate differentiation and barrier functions of the mammalian airway. ELife, 2020, 9, .                                                                  | 6.0 | 20        |
| 9  | Everything You Always Wanted to Know about β3-AR * (* But Were Afraid to Ask). Cells, 2019, 8, 357.                                                                          | 4.1 | 86        |
| 10 | Polycystin-1 regulates bone development through an interaction with the transcriptional coactivator<br>TAZ. Human Molecular Genetics, 2019, 28, 16-30.                       | 2.9 | 25        |
| 11 | Novel protein trafficking and signaling pathways in kidney physiology and pathophysiology. FASEB<br>Journal, 2019, 33, 20.2.                                                 | 0.5 | Ο         |
| 12 | Polycystin 1 is an atypical adhesion GPCR that responds to non anonical WNT signals and inhibits<br>GSK3l². FASEB Journal, 2019, 33, 863.10.                                 | 0.5 | 1         |
| 13 | Holding open the door reveals a new view of polycystin channel function. EMBO Reports, 2019, 20, e49156.                                                                     | 4.5 | 3         |
| 14 | The Polycystin Complex Reveals Its Complexity. Biochemistry, 2018, 57, 6917-6918.                                                                                            | 2.5 | 2         |
| 15 | Implications of AMPK in the Formation of Epithelial Tight Junctions. International Journal of<br>Molecular Sciences, 2018, 19, 2040.                                         | 4.1 | 39        |
| 16 | Metabolism and mitochondria in polycystic kidney disease research andÂtherapy. Nature Reviews<br>Nephrology, 2018, 14, 678-687.                                              | 9.6 | 122       |
| 17 | Newly synthesized polycystinâ€1 takes different trafficking pathways to the apical and ciliary membranes. Traffic, 2018, 19, 933-945.                                        | 2.7 | 10        |
| 18 | The secretory pathway at 50: a golden anniversary for some momentous grains of silver. Molecular<br>Biology of the Cell, 2017, 28, 229-232.                                  | 2.1 | 8         |

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The polycystins are modulated by cellular oxygen-sensing pathways and regulate mitochondrial function. Molecular Biology of the Cell, 2017, 28, 261-269.                                     | 2.1  | 73        |
| 20 | 2016 Robert W. Berliner Award for Excellence in Renal Physiology. American Journal of Physiology -<br>Renal Physiology, 2016, 310, F803-F804.                                                | 2.7  | 0         |
| 21 | The tail of polycystin-1 pays the kidney a complement. American Journal of Physiology - Renal<br>Physiology, 2016, 310, F1180-F1181.                                                         | 2.7  | 0         |
| 22 | Investigation of peanut oral immunotherapy with CpG/peanut nanoparticles in a murine model of peanut allergy. Journal of Allergy and Clinical Immunology, 2016, 138, 536-543.e4.             | 2.9  | 83        |
| 23 | Artificial bacterial biomimetic nanoparticles synergize pathogen-associated molecular patterns for vaccine efficacy. Biomaterials, 2016, 97, 85-96.                                          | 11.4 | 66        |
| 24 | Newly synthesized and recycling pools of the apical protein gp135 do not occupy the same compartments. Traffic, 2016, 17, 1272-1285.                                                         | 2.7  | 4         |
| 25 | The periciliary ring in polarized epithelial cells is a hot spot for delivery of the apical protein gp135.<br>Journal of Cell Biology, 2015, 211, 287-294.                                   | 5.2  | 14        |
| 26 | Knockdown of ezrin causes intrahepatic cholestasis by the dysregulation of bile fluidity in the bile duct epithelium in mice. Hepatology, 2015, 61, 1660-1671.                               | 7.3  | 27        |
| 27 | Dual pulse-chase microscopy reveals early divergence in the biosynthetic trafficking of the Na,K-ATPase and E-cadherin. Molecular Biology of the Cell, 2015, 26, 4401-4411.                  | 2.1  | 11        |
| 28 | Chemical and Physical Sensors in the Regulation of Renal Function. Clinical Journal of the American<br>Society of Nephrology: CJASN, 2015, 10, 1626-1635.                                    | 4.5  | 14        |
| 29 | Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca <sup>2+</sup> Channel Protein<br>Stability. Circulation, 2015, 131, 2131-2142.                                          | 1.6  | 71        |
| 30 | Akt Substrate of 160 kD Regulates Na+,K+-ATPase Trafficking in Response to Energy Depletion and Renal<br>Ischemia. Journal of the American Society of Nephrology: JASN, 2015, 26, 2765-2776. | 6.1  | 17        |
| 31 | Developmental Lung Malformations in Children. Journal of Thoracic Imaging, 2015, 30, 29-45.                                                                                                  | 1.5  | 15        |
| 32 | The periciliary ring in polarized epithelial cells is a hot spot for delivery of the apical protein gp135.<br>Journal of General Physiology, 2015, 146, 1466OIA69.                           | 1.9  | 0         |
| 33 | Trafficking to the Apical and Basolateral Membranes in Polarized Epithelial Cells. Journal of the<br>American Society of Nephrology: JASN, 2014, 25, 1375-1386.                              | 6.1  | 90        |
| 34 | Incidental Mucocele of the Appendix in a 15-Year-Old Girl. Pediatric Emergency Care, 2014, 30, 555-557.                                                                                      | 0.9  | 6         |
| 35 | Polycystin-1 cleavage and the regulation of transcriptional pathways. Pediatric Nephrology, 2014, 29, 505-511.                                                                               | 1.7  | 25        |
| 36 | SNAP-Tag to Monitor Trafficking of Membrane Proteins in Polarized Epithelial Cells. Methods in<br>Molecular Biology, 2014, 1174, 171-182.                                                    | 0.9  | 4         |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Activation of the calcium-sensing receptor induces deposition of tight junction components to the epithelial cell plasma membrane. Journal of Cell Science, 2013, 126, 5132-42.                                                             | 2.0 | 35        |
| 38 | Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and<br>blood pressure regulation. Proceedings of the National Academy of Sciences of the United States of<br>America, 2013, 110, 4410-4415. | 7.1 | 893       |
| 39 | Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. Journal of Allergy and Clinical Immunology, 2013, 132, 170-181.e9.                  | 2.9 | 187       |
| 40 | Epithelial Cell Structure and Polarity. , 2013, , 3-43.                                                                                                                                                                                     |     | 0         |
| 41 | Autosomal Dominant Polycystic Kidney Disease. , 2013, , 2645-2688.                                                                                                                                                                          |     | 1         |
| 42 | An inversin convergence. Focus on "Inversin modulates the cortical actin network during mitosisâ€.<br>American Journal of Physiology - Cell Physiology, 2013, 305, C22-C23.                                                                 | 4.6 | 4         |
| 43 | Epithelial morphogenesis of MDCK cells in three-dimensional collagen culture is modulated by interleukin-8. American Journal of Physiology - Cell Physiology, 2013, 304, C966-C975.                                                         | 4.6 | 26        |
| 44 | VIP17/MAL expression modulates epithelial cyst formation and ciliogenesis. American Journal of<br>Physiology - Cell Physiology, 2012, 303, C862-C871.                                                                                       | 4.6 | 8         |
| 45 | Novel sensory signaling systems in the kidney. Current Opinion in Nephrology and Hypertension, 2012, 21, 404-409.                                                                                                                           | 2.0 | 17        |
| 46 | The γ-Secretase Cleavage Product of Polycystin-1 Regulates TCF and CHOP-Mediated Transcriptional Activation through a p300-Dependent Mechanism. Developmental Cell, 2012, 22, 197-210.                                                      | 7.0 | 61        |
| 47 | Biosynthetic sorting of the sodium pump: Visualization of the segregation of newly synthesized epithelial Na,Kâ€ATPase from apically directed proteins. FASEB Journal, 2012, 26, 885.6.                                                     | 0.5 | 0         |
| 48 | AS160: a new Na,Kâ€ATPase partner that regulates the trafficking of the sodium pump in response to energy depletion and renal ischemia. FASEB Journal, 2012, 26, lb808.                                                                     | 0.5 | 0         |
| 49 | Role of Calcineurin in Polycystin Protein Trafficking to the Primary Cilium in LLCPK Cells. FASEB<br>Journal, 2012, 26, 868.3.                                                                                                              | 0.5 | 0         |
| 50 | Polycystinâ€1 stimulates skeletogenesis via TAZâ€mediated activation of RunX2. FASEB Journal, 2012, 26,<br>lb811.                                                                                                                           | 0.5 | 1         |
| 51 | Regulated Intramembrane Proteolysis: Signaling Pathways and Biological Functions. Physiology, 2011, 26, 34-44.                                                                                                                              | 3.1 | 87        |
| 52 | Polycystic kidney disease: Pathogenesis and potential therapies. Biochimica Et Biophysica Acta -<br>Molecular Basis of Disease, 2011, 1812, 1337-1343.                                                                                      | 3.8 | 63        |
| 53 | Interactions between β-Catenin and the HSlo Potassium Channel Regulates HSlo Surface Expression.<br>PLoS ONE, 2011, 6, e28264.                                                                                                              | 2.5 | 21        |
| 54 | Look Who's Talking Physiology, 2011, 26, 306-306.                                                                                                                                                                                           | 3.1 | 0         |

| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Macrophages Promote Cyst Growth in Polycystic Kidney Disease. Journal of the American Society of<br>Nephrology: JASN, 2011, 22, 1809-1814.                                                                                                                       | 6.1  | 192       |
| 56 | Polycystin-2 and phosphodiesterase 4C are components of a ciliary A-kinase anchoring protein<br>complex that is disrupted in cystic kidney diseases. Proceedings of the National Academy of Sciences of<br>the United States of America, 2011, 108, 10679-10684. | 7.1  | 117       |
| 57 | Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2462-2467.                                                                                  | 7.1  | 276       |
| 58 | AMP-activated Protein Kinase (AMPK) Activation and Glycogen Synthase Kinase-3β (GSK-3β) Inhibition<br>Induce Ca2+-independent Deposition of Tight Junction Components at the Plasma Membrane. Journal of<br>Biological Chemistry, 2011, 286, 16879-16890.        | 3.4  | 46        |
| 59 | Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia. American Journal of Physiology - Renal Physiology, 2011, 301, F1346-F1357.                                                                                | 2.7  | 81        |
| 60 | Renal Cystic Disease Proteins Play Critical Roles in the Organization of the Olfactory Epithelium. PLoS ONE, 2011, 6, e19694.                                                                                                                                    | 2.5  | 20        |
| 61 | Protein Phosphatase 2A Interacts with the Na+,K+-ATPase and Modulates Its Trafficking by Inhibition of Its Association with Arrestin. PLoS ONE, 2011, 6, e29269.                                                                                                 | 2.5  | 25        |
| 62 | Ligand-modified gene carriers increased uptake in target cells but reduced DNA release and transfection efficiency. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 334-343.                                                                       | 3.3  | 23        |
| 63 | Polarized traffic towards the cell surface: how to find the route. Biology of the Cell, 2010, 102, 75-91.                                                                                                                                                        | 2.0  | 28        |
| 64 | Telling kidneys to cease and decyst. Nature Medicine, 2010, 16, 751-752.                                                                                                                                                                                         | 30.7 | 6         |
| 65 | Lymphocytes Accelerate Epithelial Tight Junction Assembly: Role of AMP-Activated Protein Kinase<br>(AMPK). PLoS ONE, 2010, 5, e12343.                                                                                                                            | 2.5  | 21        |
| 66 | The cell biology of polycystic kidney disease. Journal of Cell Biology, 2010, 191, 701-710.                                                                                                                                                                      | 5.2  | 232       |
| 67 | Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. Journal of Cell<br>Biology, 2010, 190, 1079-1091.                                                                                                                                | 5.2  | 455       |
| 68 | AS160 Associates with the Na <sup>+</sup> ,K <sup>+</sup> -ATPase and Mediates the Adenosine<br>Monophosphate-stimulated Protein Kinase-dependent Regulation of Sodium Pump Surface Expression.<br>Molecular Biology of the Cell, 2010, 21, 4400-4408.           | 2.1  | 37        |
| 69 | Polycystin-1 Surface Localization Is Stimulated by Polycystin-2 and Cleavage at the G Protein-coupled<br>Receptor Proteolytic Site. Molecular Biology of the Cell, 2010, 21, 4338-4348.                                                                          | 2.1  | 67        |
| 70 | Systems Biology and the Biology of Systems. Physiology, 2010, 25, 58-58.                                                                                                                                                                                         | 3.1  | 1         |
| 71 | TLR9-Targeted Biodegradable Nanoparticles as Immunization Vectors Protect against West Nile<br>Encephalitis. Journal of Immunology, 2010, 185, 2989-2997.                                                                                                        | 0.8  | 104       |
| 72 | MAL/VIP17, a New Player in the Regulation of NKCC2 in the Kidney. Molecular Biology of the Cell, 2010, 21, 3985-3997.                                                                                                                                            | 2.1  | 30        |

5

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Association with β-COP Regulates the Trafficking of the Newly Synthesized Na,K-ATPase*. Journal of<br>Biological Chemistry, 2010, 285, 33737-33746.                                           | 3.4  | 13        |
| 74 | Partial Correction of Cystic Fibrosis Defects with PLGA Nanoparticles Encapsulating Curcumin.<br>Molecular Pharmaceutics, 2010, 7, 86-93.                                                     | 4.6  | 123       |
| 75 | Exosomeâ€release of betaâ€catenin: A novel mechanism to antagonize Wnt signaling. FASEB Journal, 2010,<br>24, 715.3.                                                                          | 0.5  | 0         |
| 76 | Interesting Times. Physiology, 2009, 24, 74-74.                                                                                                                                               | 3.1  | 1         |
| 77 | Functional expression of the olfactory signaling system in the kidney. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2059-2064.                 | 7.1  | 189       |
| 78 | POSH Stimulates the Ubiquitination and the Clathrin-independent Endocytosis of ROMK1 Channels.<br>Journal of Biological Chemistry, 2009, 284, 29614-29624.                                    | 3.4  | 24        |
| 79 | Polycystin-1 C-terminal Cleavage Is Modulated by Polycystin-2 Expression. Journal of Biological Chemistry, 2009, 284, 21011-21026.                                                            | 3.4  | 32        |
| 80 | Detecting the Surface Localization and Cytoplasmic Cleavage of Membrane-Bound Proteins. Methods in Cell Biology, 2009, 94, 223-239.                                                           | 1.1  | 6         |
| 81 | Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells. Journal of Cell Biology, 2009, 186, 269-282.                                        | 5.2  | 85        |
| 82 | The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials, 2009, 30, 2790-2798.                                                                               | 11.4 | 363       |
| 83 | Dystroglycan and AMP Kinase: Polarity's Protectors when the Power Goes Out. Developmental Cell, 2009, 16, 1-2.                                                                                | 7.0  | 3         |
| 84 | Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine, 2009, 27, 3013-3021.                                                                       | 3.8  | 261       |
| 85 | Chapter 4 Protein Trafficking in Polarized Cells. International Review of Cell and Molecular Biology, 2008, 270, 145-179.                                                                     | 3.2  | 27        |
| 86 | The Cytoplasmic Tail Dileucine Motif LL572 Determines the Glycosylation Pattern of Membrane-type 1<br>Matrix Metalloproteinase. Journal of Biological Chemistry, 2008, 283, 35410-35418.      | 3.4  | 18        |
| 87 | Expression of Tetraspan Protein CD63 Activates Protein-tyrosine Kinase (PTK) and Enhances the PTK-induced Inhibition of ROMK Channels. Journal of Biological Chemistry, 2008, 283, 7674-7681. | 3.4  | 21        |
| 88 | Exon Loss Accounts for Differential Sorting of Na-K-Cl Cotransporters in Polarized Epithelial Cells.<br>Molecular Biology of the Cell, 2008, 19, 4341-4351.                                   | 2.1  | 75        |
| 89 | Polycystin-1 C-terminal tail associates with β-catenin and inhibits canonical Wnt signaling. Human<br>Molecular Genetics, 2008, 17, 3105-3117.                                                | 2.9  | 163       |
| 90 | Epithelial junctions and polarity: complexes and kinases. Current Opinion in Nephrology and Hypertension, 2008, 17, 506-512.                                                                  | 2.0  | 16        |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Epithelial Cell Structure and Polarity. , 2008, , 1-34.                                                                                                                                                                                                          |     | Ο         |
| 92  | Autosomal Dominant Polycystic Kidney Disease and Inherited Cystic Diseases. , 2008, , 2283-2313.                                                                                                                                                                 |     | 0         |
| 93  | POSH decreases ROMK1 channel activity through stimulating clatharinâ€independent and dynaminâ€dependent endocytosis FASEB Journal, 2008, 22, 1180.1.                                                                                                             | 0.5 | 0         |
| 94  | Apical membrane expression of NKCC2 is directed by a domain within its cytoplasmic Câ€ŧerminus. FASEB<br>Journal, 2008, 22, 935.4.                                                                                                                               | 0.5 | 0         |
| 95  | MAL decreases the internalization of the aquaporin-2 water channel. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16696-16701.                                                                                     | 7.1 | 54        |
| 96  | Arrestins and Spinophilin Competitively Regulate Na <sup>+</sup> ,K <sup>+</sup> -ATPase Trafficking<br>through Association with a Large Cytoplasmic Loop of the Na <sup>+</sup> ,K <sup>+</sup> -ATPase.<br>Molecular Biology of the Cell, 2007, 18, 4508-4518. | 2.1 | 35        |
| 97  | The Future of the Pump. Journal of Clinical Gastroenterology, 2007, 41, S217-S222.                                                                                                                                                                               | 2.2 | 12        |
| 98  | Tetraspan proteins: regulators of renal structure and function. Current Opinion in Nephrology and Hypertension, 2007, 16, 353-358.                                                                                                                               | 2.0 | 17        |
| 99  | Teach Your Children Well Physiology, 2007, 22, 298-298.                                                                                                                                                                                                          | 3.1 | 1         |
| 100 | A Failure to Communicate Physiology, 2006, 21, 156-156.                                                                                                                                                                                                          | 3.1 | 0         |
| 101 | An Extracellular Loop of the Human Non-Gastric H,K-ATPase a-subunit is Involved in Apical Plasma<br>Membrane Polarization. Cellular Physiology and Biochemistry, 2006, 18, 75-84.                                                                                | 1.6 | 7         |
| 102 | AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17272-17277.                                                                      | 7.1 | 236       |
| 103 | Polycystin-2 Regulates Proliferation and Branching Morphogenesis in Kidney Epithelial Cells. Journal of Biological Chemistry, 2006, 281, 137-144.                                                                                                                | 3.4 | 49        |
| 104 | CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney.<br>Journal of Clinical Investigation, 2006, 116, 797-807.                                                                                                       | 8.2 | 61        |
| 105 | The C-Terminal Tail of the Polycystin-1 Protein Interacts with the Na,K-ATPase α-Subunit. Molecular<br>Biology of the Cell, 2005, 16, 5087-5093.                                                                                                                 | 2.1 | 30        |
| 106 | Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. Journal of Clinical Investigation, 2005, 115, 788-788.                                                                                                              | 8.2 | 1         |
| 107 | In Celebration of Unsung Heroes. Physiology, 2005, 20, 286-286.                                                                                                                                                                                                  | 3.1 | 0         |
| 108 | Physiology and Physiology: Back to the Future. Physiology, 2004, 19, 232-232.                                                                                                                                                                                    | 3.1 | 3         |

| #   | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | The COOH-terminal tail of the GAT-2 GABA transporter contains a novel motif that plays a role in basolateral targeting. American Journal of Physiology - Cell Physiology, 2004, 286, C1071-C1077.                                                               | 4.6  | 20        |
| 110 | Sorting of H,K-ATPase β-Subunit in MDCK and LLC-PK1 Cells is Independent of μ1B Adaptin Expression.<br>Traffic, 2004, 5, 449-461.                                                                                                                               | 2.7  | 26        |
| 111 | Castric parietal cell acid secretion in mice can be regulated independently of H+/K+ ATPase endocytosis. Gastroenterology, 2004, 127, 145-154.                                                                                                                  | 1.3  | 30        |
| 112 | Curcumin, a Major Constituent of Turmeric, Corrects Cystic Fibrosis Defects. Science, 2004, 304, 600-602.                                                                                                                                                       | 12.6 | 532       |
| 113 | Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. Journal of Clinical Investigation, 2004, 114, 1433-1443.                                                                                                           | 8.2  | 247       |
| 114 | Ion Pumpâ€Interacting Proteins: Promising New Partners. Annals of the New York Academy of Sciences, 2003, 986, 360-368.                                                                                                                                         | 3.8  | 19        |
| 115 | Transport Protein Trafficking in Polarized Cells. Annual Review of Cell and Developmental Biology, 2003, 19, 333-366.                                                                                                                                           | 9.4  | 112       |
| 116 | The tetraspanin CD63 enhances the internalization of the H,K-ATPase Â-subunit. Proceedings of the<br>National Academy of Sciences of the United States of America, 2003, 100, 15560-15565.                                                                      | 7.1  | 101       |
| 117 | Polycystin-1 Distribution Is Modulated by Polycystin-2 Expression in Mammalian Cells. Journal of<br>Biological Chemistry, 2003, 278, 36786-36793.                                                                                                               | 3.4  | 85        |
| 118 | <i>How megalin finds its way: identification of a novel apical sorting motif.</i> Focus on<br>"ldentification of an apical sorting determinant in the cytoplasmic tail of megalin― American Journal<br>of Physiology - Cell Physiology, 2003, 284, C1101-C1104. | 4.6  | 3         |
| 119 | Extracellular Domains, Transmembrane Segments, and Intracellular Domains Interact To Determine<br>the Cation Selectivity of Na,K- and Gastric H,K-ATPaseâ€. Biochemistry, 2002, 41, 9803-9812.                                                                  | 2.5  | 18        |
| 120 | Aquaporin-2: COOH terminus is necessary but not sufficient for routing to the apical membrane.<br>American Journal of Physiology - Renal Physiology, 2002, 282, F330-F340.                                                                                      | 2.7  | 42        |
| 121 | Cell biology of ABC transporters. Kidney International, 2002, 62, 1514-1515.                                                                                                                                                                                    | 5.2  | 0         |
| 122 | Calcium-pump inhibitors induce functional surface expression of ΔF508-CFTR protein in cystic fibrosis<br>epithelial cells. Nature Medicine, 2002, 8, 485-492.                                                                                                   | 30.7 | 199       |
| 123 | Ion pump sorting in polarized renal epithelial cells. Kidney International, 2001, 60, 427-430.                                                                                                                                                                  | 5.2  | 8         |
| 124 | The NH <sub>2</sub> -terminus of Norepinephrine Transporter Contains a Basolateral Localization Signal for Epithelial Cells. Molecular Biology of the Cell, 2001, 12, 3797-3807.                                                                                | 2.1  | 36        |
| 125 | The C-terminal Tail of the Metabotropic Glutamate Receptor Subtype 7 Is Necessary but Not Sufficient<br>for Cell Surface Delivery and Polarized Targeting in Neurons and Epithelia. Journal of Biological<br>Chemistry, 2001, 276, 9133-9140.                   | 3.4  | 16        |
| 126 | Ion Pumps in Polarized Cells: Sorting and Regulation of the Na+,K+- and H+,K+-ATPases. Journal of<br>Biological Chemistry, 2001, 276, 29617-29620.                                                                                                              | 3.4  | 77        |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Differential localization of human nongastric H <sup>+</sup> -K <sup>+</sup> -ATPase ATP1AL1 in<br>polarized renal epithelial cells. American Journal of Physiology - Renal Physiology, 2000, 279, F417-F425.      | 2.7 | 19        |
| 128 | The Roles of Carbohydrate Chains of the β-Subunit on the Functional Expression of Gastric H+,K+-ATPase. Journal of Biological Chemistry, 2000, 275, 8324-8330.                                                     | 3.4 | 46        |
| 129 | Residues of the Fourth Transmembrane Segments of the Na,K-ATPase and the Gastric H,K-ATPase Contribute to Cation Selectivity. Journal of Biological Chemistry, 2000, 275, 1749-1756.                               | 3.4 | 27        |
| 130 | The cell biology of ion pumps: sorting and regulation. European Journal of Cell Biology, 2000, 79, 557-563.                                                                                                        | 3.6 | 36        |
| 131 | A Transmembrane Segment Determines the Steady-State Localization of an Ion-Transporting Adenosine<br>Triphosphatase. Journal of Cell Biology, 2000, 148, 769-778.                                                  | 5.2 | 81        |
| 132 | Cation Selectivity of Gastric H,K-ATPase and Na,K-ATPase Chimeras. Journal of Biological Chemistry, 1999, 274, 18374-18381.                                                                                        | 3.4 | 15        |
| 133 | Regulation of myocardial glucose uptake and transport during ischemia and energetic stress.<br>American Journal of Cardiology, 1999, 83, 25-30.                                                                    | 1.6 | 264       |
| 134 | Gastric H+/K+-ATPase: targeting signals in the regulation of physiologic function. Current Opinion in Cell Biology, 1998, 10, 468-473.                                                                             | 5.4 | 13        |
| 135 | Identification of Sorting Determinants in the C-terminal Cytoplasmic Tails of the γ-Aminobutyric Acid<br>Transporters GAT-2 and GAT-3. Journal of Biological Chemistry, 1998, 273, 25616-25627.                    | 3.4 | 89        |
| 136 | Additive Effects of Hyperinsulinemia and Ischemia on Myocardial GLUT1 and GLUT4 Translocation In<br>Vivo. Circulation, 1998, 98, 2180-2186.                                                                        | 1.6 | 77        |
| 137 | Tyrosine-based Membrane Protein Sorting Signals Are Differentially Interpreted by Polarized<br>Madin-Darby Canine Kidney and LLC-PK1 Epithelial Cells. Journal of Biological Chemistry, 1998, 273,<br>26862-26869. | 3.4 | 109       |
| 138 | ATP1AL1, a Member of the Non-gastric H,K-ATPase Family, Functions as a Sodium Pump. Journal of Biological Chemistry, 1998, 273, 27772-27778.                                                                       | 3.4 | 53        |
| 139 | [25] Expression of neurotransmitter transport systems in polarized cells. Methods in Enzymology, 1998, 296, 370-388.                                                                                               | 1.0 | 2         |
| 140 | Signals and Mechanisms of Sorting in Epithelial Polarity. Advances in Molecular and Cell Biology, 1998, , 95-131.                                                                                                  | 0.1 | 0         |
| 141 | A tyrosine-based signal regulates H-K-ATPase-mediated potassium reabsorption in the kidney. American<br>Journal of Physiology - Renal Physiology, 1998, 275, F818-F826.                                            | 2.7 | 16        |
| 142 | Effects of okadaic acid, calyculin A, and PDBu on state of phosphorylation of rat renal<br>Na <sup>+</sup> -K <sup>+</sup> -ATPase. American Journal of Physiology - Renal Physiology, 1998, 275,<br>F863-F869.    | 2.7 | 18        |
| 143 | Sorting of Two Polytopic Proteins, the γ-Aminobutyric Acid and Betaine Transporters, in Polarized<br>Epithelial Cells. Journal of Biological Chemistry, 1997, 272, 6584-6592.                                      | 3.4 | 61        |
| 144 | Sorting and trafficking of ion transport proteins in polarized epithelial cells. Current Opinion in<br>Nephrology and Hypertension, 1997, 6, 455-459.                                                              | 2.0 | 5         |

| #   | Article                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | A Tyrosine-Based Signal Targets H/K-ATPase to a Regulated Compartment and Is Required for the Cessation of Gastric Acid Secretion. Cell, 1997, 90, 501-510.              | 28.9 | 99        |
| 146 | Sorting of Ion Pumps in Polarized Epithelial Cells Annals of the New York Academy of Sciences, 1997, 834, 514-523.                                                       | 3.8  | 7         |
| 147 | Low-Flow Ischemia Leads to Translocation of Canine Heart GLUT-4 and GLUT-1 Glucose Transporters to the Sarcolemma In Vivo. Circulation, 1997, 95, 415-422.               | 1.6  | 186       |
| 148 | Cell-specific Sorting of Biogenic Amine Transporters Expressed in Epithelial Cells. Journal of<br>Biological Chemistry, 1996, 271, 18100-18106.                          | 3.4  | 89        |
| 149 | Polarized Expression of GABA Transporters in Madin-Darby Canine Kidney Cells and Cultured<br>Hippocampal Neurons. Journal of Biological Chemistry, 1996, 271, 6917-6924. | 3.4  | 54        |
| 150 | Na+,K+-ATPase in the Choroid Plexus. Journal of Biological Chemistry, 1995, 270, 2427-2430.                                                                              | 3.4  | 85        |
| 151 | The generation of epithelial polarity in mammalian and Drosophila embryos. Seminars in<br>Developmental Biology, 1995, 6, 39-46.                                         | 1.3  | 5         |
| 152 | Sorting of the Gastric H,K-ATPase in Endocrine and Epithelial Cells. Annals of the New York Academy of Sciences, 1994, 733, 212-222.                                     | 3.8  | 4         |
| 153 | Chapter 8 Synthesis and Sorting of Ion Pumps in Polarized Cells. Current Topics in Membranes, 1994, 41, 143-168.                                                         | 0.9  | 2         |
| 154 | Sorting of ion transport proteins in polarized cells. Journal of Cell Science, 1993, 1993, 13-20.                                                                        | 2.0  | 11        |
| 155 | Cell surface biotinylation in the determination of epithelial membrane polarity. Cytotechnology, 1992, 14, 173-180.                                                      | 0.3  | 24        |
| 156 | Chapter 2 Biogenesis and Sorting of Plasma Membrane Proteins. Current Topics in Membranes, 1991, 39, 37-86.                                                              | 0.9  | 5         |
| 157 | Dependence on pH of polarized sorting of secreted proteins. Nature, 1987, 329, 632-635.                                                                                  | 27.8 | 199       |
| 158 | Evidence for a high and specific concentration of (Na+,K+)ATPase in the plasma membrane of the osteoclast. Cell, 1986, 46, 311-320.                                      | 28.9 | 103       |
| 159 | Intracellular sorting and polarized cell surface delivery of (Na+,K+)ATPase, an endogenous component of MDCK cell basolateral plasma membranes. Cell, 1986, 46, 623-631. | 28.9 | 234       |
| 160 | Monoclonal antibody to Na,K-ATPase: Immunocytochemical localization along nephron segments.<br>Kidney International, 1985, 28, 899-913.                                  | 5.2  | 266       |