Jeff Penfold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3677477/publications.pdf

Version: 2024-02-01

174 papers 10,975 citations

52 h-index 99 g-index

178 all docs 178 docs citations

178 times ranked

5741 citing authors

#	Article	IF	CITATIONS
1	An analytic structure factor for macroion solutions. Molecular Physics, 1981, 42, 109-118.	0.8	1,088
2	Determination of micelle structure and charge by neutron small-angle scattering. Colloid and Polymer Science, 1983, 261, 1022-1030.	1.0	641
3	The application of the specular reflection of neutrons to the study of surfaces and interfaces. Journal of Physics Condensed Matter, 1990, 2, 1369-1412.	0.7	505
4	Surfactant layers at the air/water interface: structure and composition. Advances in Colloid and Interface Science, 2000, 84, 143-304.	7.0	414
5	Polymer/surfactant interactions at the air/water interface. Advances in Colloid and Interface Science, 2007, 132, 69-110.	7.0	395
6	Recent advances in the study of chemical surfaces and interfaces by specular neutron reflection. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3899-3917.	1.7	319
7	SANS at Pulsed Neutron Sources: Present and Future Prospects. Journal of Applied Crystallography, 1997, 30, 1140-1147.	1.9	282
8	Adsorption of Dodecyl Sulfate Surfactants with Monovalent Metal Counterions at the Air-Water Interface Studied by Neutron Reflection and Surface Tension. Journal of Colloid and Interface Science, 1993, 158, 303-316.	5.0	239
9	Adsorption of Ionic Surfactants at the Airâ "Solution Interface. Langmuir, 2000, 16, 4511-4518.	1.6	226
10	Structure of aqueous decyltrimethylammonium bromide solutions at the air water interface studied by the specular reflection of neutrons. The Journal of Physical Chemistry, 1989, 93, 381-388.	2.9	174
11	The Conformational Structure of Bovine Serum Albumin Layers Adsorbed at the Silicaâ^'Water Interface. Journal of Physical Chemistry B, 1998, 102, 8100-8108.	1.2	170
12	The Effect of Solution pH on the Structure of Lysozyme Layers Adsorbed at the Silicaâ^'Water Interface Studied by Neutron Reflection. Langmuir, 1998, 14, 438-445.	1.6	158
13	Neutron reflection study of bovine beta-casein adsorbed on OTS self-assembled monolayers. Science, 1995, 267, 657-660.	6.0	152
14	The Adsorption of Oppositely Charged Polyelectrolyte/Surfactant Mixtures:Â Neutron Reflection from Dodecyl Trimethylammonium Bromide and Sodium Poly(styrene sulfonate) at the Air/Water Interface. Langmuir, 2002, 18, 4748-4757.	1.6	148
15	Organization of Polymerâ-'Surfactant Mixtures at the Airâ-'Water Interface: Sodium Dodecyl Sulfate and Poly(dimethyldiallylammonium chloride). Langmuir, 2002, 18, 5147-5153.	1.6	136
16	Investigation of Mixing in Binary Surfactant Solutions by Surface Tension and Neutron Reflection:Â Anionic/Nonionic and Zwitterionic/Nonionic Mixtures. Journal of Physical Chemistry B, 1997, 101, 9215-9223.	1.2	130
17	Adsorption of Oppositely Charged Polyelectrolyte/Surfactant Mixtures. Neutron Reflection from Alkyl Trimethylammonium Bromides and Sodium Poly(styrenesulfonate) at the Air/Water Interface:Â The Effect of Surfactant Chain Length. Langmuir, 2003, 19, 3712-3719.	1.6	122
18	Determination of the structure of a surfactant layer adsorbed at the silica/water interface by neutron reflection. Chemical Physics Letters, 1989, 162, 196-202.	1.2	118

#	Article	IF	Citations
19	The Composition and Structure of Sodium Dodecyl Sulfate-Dodecanol Mixtures Adsorbed at the Air-Water Interface: A Neutron Reflection Study. Journal of Colloid and Interface Science, 1995, 174, 441-455.	5. 0	117
20	Neutron Reflection from Hexadecyltrimethylammonium Bromide Adsorbed on Smooth and Rough Silicon Surfaces. Langmuir, 1996, 12, 6036-6043.	1.6	115
21	Limitations in the Application of the Gibbs Equation to Anionic Surfactants at the Air/Water Surface: Sodium Dodecylsulfate and Sodium Dodecylmonooxyethylenesulfate Above and Below the CMC. Langmuir, 2013, 29, 9335-9351.	1.6	109
22	Direct determination by neutron reflection of the structure of triethylene glycol monododecyl ether layers at the air/water interface. Langmuir, 1993, 9, 1352-1360.	1.6	108
23	Adsorption of Polyelectrolyte/Surfactant Mixtures at the Airâ^'Solution Interface: Poly(ethyleneimine)/Sodium Dodecyl Sulfate. Langmuir, 2005, 21, 10061-10073.	1.6	108
24	Adsorption of Serum Albumins at the Air/Water Interface. Langmuir, 1999, 15, 6975-6983.	1.6	103
25	Solution Self-Assembly and Adsorption at the Airâ^'Water Interface of the Monorhamnose and Dirhamnose Rhamnolipids and Their Mixtures. Langmuir, 2010, 26, 18281-18292.	1.6	96
26	Polyelectrolyte/surfactant mixtures at the air–solution interface. Current Opinion in Colloid and Interface Science, 2006, 11, 337-344.	3.4	95
27	Neutron reflection from a layer of monododecyl hexaethylene glycol adsorbed at the air-liquid interface: the configuration of the ethylene glycol chain. The Journal of Physical Chemistry, 1993, 97, 8012-8020.	2.9	94
28	Solution and Adsorption Behavior of the Mixed Surfactant System Sodium Dodecyl Sulfate/n-Hexaethylene Glycol Monododecyl Ether. Langmuir, 1995, 11, 2496-2503.	1.6	93
29	The Adsorption of Oppositely Charged Polyelectrolyte/Surfactant Mixtures at the Air/Water Interface:  Neutron Reflection from Dodecyl Trimethylammonium Bromide/Sodium Poly(styrene) Tj ETQq1	1 0 .7& 431	4 rgBT Overlo
30	Application of the Gibbs Equation to the Adsorption of Nonionic Surfactants and Polymers at the Air–Water Interface: Comparison with Surface Excesses Determined Directly using Neutron Reflectivity. Langmuir, 2013, 29, 9324-9334.	1.6	88
31	Structure and Composition of Mixed Surfactant Micelles of Sodium Dodecyl Sulfate and Hexaethylene Glycol Monododecyl Ether and of Hexadecyltrimethylammonium Bromide and Hexaethylene Glycol Monododecyl Ether. Journal of Physical Chemistry B, 1999, 103, 5204-5211.	1.2	85
32	Aggregation of the Naturally Occurring Lipopeptide, Surfactin, at Interfaces and in Solution: An Unusual Type of Surfactant?. Langmuir, 2009, 25, 4211-4218.	1.6	85
33	Equilibrium Surface Adsorption Behavior in Complex Anionic/Nonionic Surfactant Mixtures. Langmuir, 2007, 23, 10140-10149.	1.6	80
34	Neutron Reflection from a Layer of Monododecyl Octaethylene Glycol Adsorbed at the Air-Liquid Interface: The Structure of the Layer and the Effects of Temperature. The Journal of Physical Chemistry, 1994, 98, 6559-6567.	2.9	77
35	The determination of segment density profiles of polyethylene oxide layers adsorbed at the air-water interface. Polymer, 1996, 37, 109-114.	1.8	77
36	Structure of Mixed Anionic/Nonionic Surfactant Micelles:Â Experimental Observations Relating to the Role of Headgroup Electrostatic and Steric Effects and the Effects of Added Electrolyte. Journal of Physical Chemistry B, 2005, 109, 10760-10770.	1.2	75

#	Article	IF	Citations
37	Limitations in the Use of Surface Tension and the Gibbs Equation To Determine Surface Excesses of Cationic Surfactants. Langmuir, 2014, 30, 6739-6747.	1.6	7 5
38	Structure of adsorbed layers of ethylene glycol monododecyl ether surfactants with one, two, and four ethylene oxide groups, as determined by neutron reflection. Langmuir, 1993, 9, 2408-2416.	1.6	74
39	Interaction between Poly(ethylene oxide) and Sodium Dodecyl Sulfate Studied by Neutron Reflection. Journal of Physical Chemistry B, 1998, 102, 4912-4917.	1.2	74
40	The Structure of Monododecyl Pentaethylene Glycol Monolayers with and without Added Dodecane at the Air/Solution Interface:  A Neutron Reflection Study. Journal of Physical Chemistry B, 1998, 102, 5785-5793.	1.2	70
41	Role of Counterion Concentration in Determining Micelle Aggregation:Â Evaluation of the Combination of Constraints from Small-Angle Neutron Scattering, Electron Paramagnetic Resonance, and Time-Resolved Fluorescence Quenching. Journal of Physical Chemistry B, 2004, 108, 3810-3816.	1.2	70
42	Adsorption of Mixed Surfactants at the Oilâ^'Water Interface. Journal of Physical Chemistry B, 2000, 104, 606-614.	1.2	69
43	On the Consequences of Surface Treatment on the Adsorption of Nonionic Surfactants at the Hydrophilic Silicaâ^'Solution Interface. Langmuir, 2002, 18, 2967-2970.	1.6	67
44	Mixing Behavior of the Biosurfactant, Rhamnolipid, with a Conventional Anionic Surfactant, Sodium Dodecyl Benzene Sulfonate. Langmuir, 2010, 26, 17958-17968.	1.6	65
45	Investigation of Mixing in Binary Surfactant Solutions by Surface Tension and Neutron Reflection:Â Strongly Interacting Anionic/Zwitterionic Mixtures. Journal of Physical Chemistry B, 1998, 102, 8834-8846.	1.2	62
46	The Adsorption Behavior of Ionic Surfactants and Their Mixtures with Nonionic Polymers and with Polyelectrolytes of Opposite Charge at the Air–Water Interface. Journal of Physical Chemistry B, 2014, 118, 2769-2783.	1.2	62
47	The Interaction between Sodium Alkyl Sulfate Surfactants and the Oppositely Charged Polyelectrolyte, polyDMDAAC, at the Airâ^'Water Interface:Â The Role of Alkyl Chain Length and Electrolyte and Comparison with Theoretical Predictions. Langmuir, 2007, 23, 3128-3136.	1.6	61
48	Spontaneous Formation of Nanovesicles in Mixtures of Nonionic and Dialkyl Chain Cationic Surfactants Studied by Surface Tension and SANS. Langmuir, 2009, 25, 3932-3943.	1.6	61
49	Structure of Monolayers of Monododecyl Dodecaethylene Glycol at the Airâ 'Water Interface Studied by Neutron Reflection. Journal of Physical Chemistry B, 1997, 101, 10332-10339.	1.2	60
50	Adsorption and self-assembly of biosurfactants studied by neutron reflectivity and small angle neutron scattering: glycolipids, lipopeptides and proteins. Soft Matter, 2012, 8, 578-591.	1.2	58
51	Solution Self-Assembly of the Sophorolipid Biosurfactant and Its Mixture with Anionic Surfactant Sodium Dodecyl Benzene Sulfonate. Langmuir, 2011, 27, 8867-8877.	1.6	57
52	Organization of Polymerâ^'Surfactant Mixtures at the Airâ^'Water Interface:Â Poly(dimethyldiallylammonium chloride), Sodium Dodecyl Sulfate, and Hexaethylene Glycol Monododecyl Ether. Langmuir, 2002, 18, 5139-5146.	1.6	55
53	Neutron reflectivity and small angle neutron scattering: An introduction and perspective on recent progress. Current Opinion in Colloid and Interface Science, 2014, 19, 198-206.	3.4	53
54	Adsorption of Mixed Anionic and Nonionic Surfactants at the Hydrophilic Silicon Surface. Langmuir, 2002, 18, 5755-5760.	1.6	52

#	Article	IF	CITATIONS
55	Structure of the Complexes Formed between Sodium Dodecyl Sulfate and a Charged and Uncharged Ethoxylated Polyethyleneimine:Â Small-Angle Neutron Scattering, Electromotive Force, and Isothermal Titration Calorimetry Measurements. Langmuir, 2001, 17, 5657-5665.	1.6	50
56	The composition of non-ionic surfactant mixtures at the air/water interface as determined by neutron reflectivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 102, 127-132.	2.3	49
57	The Impact of Electrolyte on the Adsorption of Sodium Dodecyl Sulfate/Polyethyleneimine Complexes at the Airâ^'Solution Interface. Langmuir, 2007, 23, 3690-3698.	1.6	48
58	Saponin Adsorption at the Air–Water Interface—Neutron Reflectivity and Surface Tension Study. Langmuir, 2018, 34, 9540-9547.	1.6	48
59	Surface composition of mixed surfactant monolayers at concentrations well in excess of the critical micelle concentration. A neutron scattering study. Langmuir, 1993, 9, 1651-1656.	1.6	47
60	Adsorption of Sophorolipid Biosurfactants on Their Own and Mixed with Sodium Dodecyl Benzene Sulfonate, at the Air/Water Interface. Langmuir, 2011, 27, 8854-8866.	1.6	46
61	Adsorption Behavior of Hydrophobin and Hydrophobin/Surfactant Mixtures at the Air–Water Interface. Langmuir, 2011, 27, 11316-11323.	1.6	45
62	Neutron Reflectivity Studies of the Adsorption of Aerosol-OT at the Airâ^'Water Interface:  The Structure of the Sodium Salt. Journal of Physical Chemistry B, 1997, 101, 1615-1620.	1.2	43
63	Adsorption of Polymer/Surfactant Mixtures at the Airâ^'Water Interface: Ethoxylated Poly(ethyleneimine) and Sodium Dodecyl Sulfateâ€. Langmuir, 2003, 19, 7740-7745.	1.6	43
64	The Surface and Solution Properties of Dihexadecyl Dimethylammonium Bromide. Langmuir, 2008, 24, 6509-6520.	1.6	43
65	The Impact of Multivalent Counterions, Al ³⁺ , on the Surface Adsorption and Self-Assembly of the Anionic Surfactant Alkyloxyethylene Sulfate and Anionic/Nonionic Surfactant Mixtures. Langmuir, 2010, 26, 16699-16709.	1.6	43
66	Adsorption of the Lamellar Phase of Aerosol-OT at the Solid/Liquid and Air/Liquid Interfaces. Journal of Physical Chemistry B, 1999, 103, 10800-10806.	1.2	42
67	Analysis of the Asymmetric Synergy in the Adsorption of Zwitterionic–lonic Surfactant Mixtures at the Air–Water Interface below and above the Critical Micelle Concentration. Journal of Physical Chemistry B, 2016, 120, 3677-3691.	1.2	42
68	The application of neutron reflection to the study of layers adsorbed at liquid interfaces. Colloids and Surfaces, 1991, 52, 85-106.	0.9	41
69	Adsorption and self-assembly properties of the plant based biosurfactant, Glycyrrhizic acid. Journal of Colloid and Interface Science, 2021, 598, 444-454.	5.0	41
70	Self-Assembly of Mixed Anionic and Nonionic Surfactants in Aqueous Solution. Langmuir, 2011, 27, 7453-7463.	1.6	40
71	Influence of Calcium Ions on Rhamnolipid and Rhamnolipid/Anionic Surfactant Adsorption and Self-Assembly. Langmuir, 2013, 29, 3912-3923.	1.6	40
72	Ordered Structures of Dichain Cationic Surfactants at Interfacesâ€. Langmuir, 2003, 19, 7719-7726.	1.6	39

#	Article	IF	CITATIONS
73	The Formation of Surface Multilayers at the Air–Water Interface from Sodium Polyethylene Glycol Monoalkyl Ether Sulfate/AlCl ₃ Solutions: The Role of the Size of the Polyethylene Oxide Group. Langmuir, 2013, 29, 11656-11666.	1.6	39
74	Effect of Dodecanol on Mixed Nonionic and Nonionic/Anionic Surfactant Adsorption at the Air/Water Interface. Langmuir, 1994, 10, 4136-4141.	1.6	38
75	Manipulation of the Adsorption of Ionic Surfactants onto Hydrophilic Silica Using Polyelectrolytes. Langmuir, 2004, 20, 7177-7182.	1.6	38
76	Surface Behavior, Aggregation and Phase Separation of Aqueous Mixtures of Dodecyl Trimethylammonium Bromide and Sodium Oligoarene Sulfonates: the Transition to Polyelectrolyte/Surfactant Behavior. Langmuir, 2012, 28, 327-338.	1.6	38
77	Multilayering of Surfactant Systems at the Air–Dilute Aqueous Solution Interface. Langmuir, 2015, 31, 7440-7456.	1.6	37
78	The Structure of the Mixed Nonionic Surfactant Monolayer of Monododecyl Triethylene Glycol and Monododecyl Octaethylene Glycol at the Air–Water Interface. Journal of Colloid and Interface Science, 1998, 201, 223-232.	5.0	36
79	Conformal Roughness in the Adsorbed Lamellar Phase of Aerosol-OT at the Airâ^'Water and Liquidâ^'Solid Interfaces. Langmuir, 2001, 17, 5858-5864.	1.6	36
80	Directed microbial biosynthesis of deuterated biosurfactants and potential future application to other bioactive molecules. Applied Microbiology and Biotechnology, 2010, 87, 1347-1354.	1.7	36
81	Destruction and Solubilization of Supported Phospholipid Bilayers on Silica by the Biosurfactant Surfactin. Langmuir, 2010, 26, 7334-7342.	1.6	36
82	Nature of Amineâ [^] Surfactant Interactions at the Airâ [^] Solution Interface. Langmuir, 2009, 25, 3972-3980.	1.6	35
83	Impact of Model Perfumes on Surfactant and Mixed Surfactant Self-Assembly. Langmuir, 2008, 24, 12209-12220.	1.6	34
84	Adsorption of Polyelectrolyte/Surfactant Mixtures at the Airâ^'Water Interface: Modified Poly(ethyleneimine) and Sodium Dodecyl Sulfate. Langmuir, 2011, 27, 2601-2612.	1.6	34
85	A Couette shear flow cell for small-angle neutron scattering studies. Measurement Science and Technology, 1990, 1, 179-183.	1.4	33
86	Surface and Solution Behavior of the Mixed Dialkyl Chain Cationic and Nonionic Surfactants. Langmuir, 2004, 20, 1269-1283.	1.6	33
87	Influence of the Polyelectrolyte Poly(ethyleneimine) on the Adsorption of Surfactant Mixtures of Sodium Dodecyl Sulfate and Monododecyl Hexaethylene Glycol at the Airâ 'Solution Interface. Langmuir, 2006, 22, 8840-8849.	1.6	32
88	The Microstructure of Di-alkyl Chain Cationic/Nonionic Surfactant Mixtures:  Observation of Coexisting Lamellar and Micellar Phases and Depletion Induced Phase Separation. Journal of Physical Chemistry B, 2005, 109, 18107-18116.	1.2	30
89	Spontaneous Surface Self-Assembly in Protein–Surfactant Mixtures: Interactions between Hydrophobin and Ethoxylated Polysorbate Surfactants. Journal of Physical Chemistry B, 2014, 118, 4867-4875.	1.2	30
90	Adsorption of Nonionic Mixtures at the Airâ€"Water Interface: Effects of Temperature and Electrolyte. Journal of Colloid and Interface Science, 2002, 247, 404-411.	5.0	29

#	Article	IF	CITATIONS
91	Adsorption at Air–Water and Oil–Water Interfaces and Self-Assembly in Aqueous Solution of Ethoxylated Polysorbate Nonionic Surfactants. Langmuir, 2015, 31, 3003-3011.	1.6	29
92	Self-Assembly of Hydrophobin and Hydrophobin/Surfactant Mixtures in Aqueous Solution. Langmuir, 2011, 27, 10514-10522.	1.6	28
93	Effects of length and hydrophilicity/hydrophobicity of diamines on self-assembly of diamine/SDS gemini-like surfactants. Soft Matter, 2017, 13, 8980-8989.	1.2	28
94	Surface Ordering in Dilute Dihexadecyl Dimethyl Ammonium Bromide Solutions at the Airâ^'Water Interface. Langmuir, 2004, 20, 2265-2269.	1.6	27
95	Polyelectrolyte Modified Solid Surfaces:Â the Consequences for Ionic and Mixed Ionic/Nonionic Surfactant Adsorption. Langmuir, 2005, 21, 11757-11764.	1.6	27
96	Adsorption of Hydrophobin–Protein Mixtures at the Air–Water Interface: The Impact of pH and Electrolyte. Langmuir, 2015, 31, 10008-10016.	1.6	27
97	Surfactant/biosurfactant mixing: Adsorption of saponin/nonionic surfactant mixtures at the air-water interface. Journal of Colloid and Interface Science, 2020, 574, 385-392.	5.0	27
98	Self-Assembly in Mixed Dialkyl Chain Cationicâ^'Nonionic Surfactant Mixtures: Dihexadecyldimethyl Ammonium Bromideâ^'Monododecyl Hexaethylene Glycol (Monododecyl Dodecaethylene Glycol) Mixtures. Langmuir, 2008, 24, 7674-7687.	1.6	26
99	Mixed surfactants at the air–water interface. Annual Reports on the Progress of Chemistry Section C, 2010, 106, 14.	4.4	26
100	Self-Assembly in Complex Mixed Surfactant Solutions: The Impact of Dodecyl Triethylene Glycol on Dihexadecyl Dimethyl Ammonium Bromide. Langmuir, 2008, 24, 10089-10098.	1.6	25
101	The Adsorption and Self-Assembly of Mixtures of Alkylbenzene Sulfonate Isomers and the Role of Divalent Electrolyte. Langmuir, 2011, 27, 6674-6682.	1.6	25
102	Neutron specular and off-specular reflection from the surface of aerosol-OT solutions above the critical micelle concentration. Faraday Discussions, 1996, 104, 127.	1.6	24
103	Interplay between the Surface Adsorption and Solution-Phase Behavior in Dialkyl Chain Cationicâ^'Nonionic Surfactant Mixtures. Langmuir, 2009, 25, 3924-3931.	1.6	24
104	Adsorption Behavior of Hydrophobin and Hydrophobin/Surfactant Mixtures at the Solid–Solution Interface. Langmuir, 2011, 27, 10464-10474.	1.6	24
105	The role of electrolyte and polyelectrolyte on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, at the air–water interface. Journal of Colloid and Interface Science, 2011, 356, 656-664.	5.0	24
106	Kinetics of Surfactant Desorption at an Air–Solution Interface. Langmuir, 2012, 28, 17339-17348.	1.6	24
107	The Formation of Surface Multilayers at the Air–Water Interface from Sodium Diethylene Glycol Monoalkyl Ether Sulfate/AlCl ₃ Solutions: The Role of the Alkyl Chain Length. Langmuir, 2013, 29, 12744-12753.	1.6	24
108	The structure of mixed nonionic surfactant monolayers at the air–water interface: the effects of different alkyl chain lengths. Journal of Colloid and Interface Science, 2003, 262, 235-242.	5.0	23

#	Article	IF	Citations
109	Surface Adsorption in Ternary Surfactant Mixtures above the Critical Micelle Concentration: Effects of Asymmetry on the Composition Dependence of the Excess Free Energy. Journal of Physical Chemistry B, 2017, 121, 2825-2838.	1.2	22
110	Thermodynamics of the Air–Water Interface of Mixtures of Surfactants with Polyelectrolytes, Oligoelectrolytes, and Multivalent Metal Electrolytes. Journal of Physical Chemistry B, 2018, 122, 12411-12427.	1.2	22
111	The effect of shear on the adsorption of non-ionic surfactants at the liquidâ€"solid interface. Physica B: Condensed Matter, 1996, 221, 325-330.	1.3	21
112	Manipulating perfume delivery to the interface using polymer–surfactant interactions. Journal of Colloid and Interface Science, 2016, 466, 220-226.	5.0	21
113	Structure and Composition of the Mixed Monolayer of Hexadecyltrimethylammonium Bromide and Benzyl Alcohol Adsorbed at the Air/Water Interface. Langmuir, 1998, 14, 2139-2144.	1.6	20
114	Effect of Polymer Molecular Weight and Solution pH on the Surface Properties of Sodium Dodecylsulfate-Poly(Ethyleneimine) Mixtures. Langmuir, 2012, 28, 14909-14916.	1.6	20
115	Impact of AlCl ₃ on the Self-Assembly of the Anionic Surfactant Sodium Polyethylene Glycol Monoalkyl Ether Sulfate in Aqueous Solution. Langmuir, 2013, 29, 13359-13366.	1.6	20
116	Adsorption and self-assembly in methyl ester sulfonate surfactants, their eutectic mixtures and the role of electrolyte. Journal of Colloid and Interface Science, 2018, 516, 456-465.	5.0	20
117	Shear-Induced Structures in Concentrated Surfactant Micellar Phases. Journal of Applied Crystallography, 1997, 30, 744-749.	1.9	19
118	Recent developments and applications of the thermodynamics of surfactant mixing. Molecular Physics, 2019, 117, 3376-3388.	0.8	19
119	Mixing Natural and Synthetic Surfactants: Co-Adsorption of Triterpenoid Saponins and Sodium Dodecyl Sulfate at the Air–Water Interface. Langmuir, 2020, 36, 5997-6006.	1.6	19
120	A Study of the Interactions in a Ternary Surfactant System in Micelles and Adsorbed Layers. Journal of Physical Chemistry B, 1998, 102, 9708-9713.	1.2	18
121	Adsorption of Nonionic Surfactant Mixtures at the Hydrophilic Solidâ^'Solution Interface. Langmuir, 2005, 21, 6330-6336.	1.6	18
122	Surface and Solution Properties of Anionic/Nonionic Surfactant Mixtures of Alkylbenzene Sulfonate and Triethyleneglycol Decyl Ether. Langmuir, 2010, 26, 10614-10626.	1.6	18
123	Ion Specific Effects in Trivalent Counterion Induced Surface and Solution Self-Assembly of the Anionic Surfactant Sodium Polyethylene Glycol Monododecyl Ether Sulfate. Langmuir, 2014, 30, 4694-4702.	1.6	18
124	Adsorption of Methyl Ester Sulfonate at the Airâ€"Water Interface: Can Limitations in the Application of the Gibbs Equation be Overcome by Computer Purification?. Langmuir, 2017, 33, 9944-9953.	1.6	18
125	The impact of electrolyte on the adsorption of the anionic surfactant methyl ester sulfonate at the air-solution interface: Surface multilayer formation. Journal of Colloid and Interface Science, 2018, 512, 231-238.	5.0	18
126	Behavior of Nonionic Water Soluble Homopolymers at the Air/Water Interface:Â Neutron Reflectivity and Surface Tension Results for Poly(vinyl methyl ether). Langmuir, 2002, 18, 5064-5073.	1.6	17

#	Article	IF	Citations
127	Modifying the Adsorption Properties of Anionic Surfactants onto Hydrophilic Silica Using the pH Dependence of the Polyelectrolytes PEI, Ethoxylated PEI, and Polyamines. Langmuir, 2011, 27, 3569-3577.	1.6	17
128	Comparison of the Coadsorption of Benzyl Alcohol and Phenyl Ethanol with the Cationic Surfactant, Hexadecyl Trimethyl Ammonium Bromide, at the Air–Water Interface. Journal of Colloid and Interface Science, 2002, 247, 397-403.	5.0	16
129	Effect of Architecture on the Formation of Surface Multilayer Structures at the Air–Solution Interface from Mixtures of Surfactant with Small Poly(ethyleneimine)s. Langmuir, 2012, 28, 6336-6347.	1.6	16
130	Self-assembly in dilute mixtures of non-ionic and anionic surfactants and rhamnolipd biosurfactants. Journal of Colloid and Interface Science, 2017, 487, 493-503.	5.0	16
131	Strong synergistic interactions in zwitterionic–anionic surfactant mixtures at the air–water interface and in micelles: The role of steric and electrostatic interactions. Journal of Colloid and Interface Science, 2022, 613, 297-310.	5.0	16
132	Impact of the Degree of Ethoxylation of the Ethoxylated Polysorbate Nonionic Surfactant on the Surface Self-Assembly of Hydrophobin-Ethoxylated Polysorbate Surfactant Mixtures. Langmuir, 2014, 30, 9741-9751.	1.6	15
133	Impact of Electrolyte on Adsorption at the Air–Water Interface for Ternary Surfactant Mixtures above the Critical Micelle Concentration. Langmuir, 2017, 33, 4301-4312.	1.6	15
134	Adsorption at the Air–Water Interface in Biosurfactant–Surfactant Mixtures: Quantitative Analysis of Adsorption in a Five-Component Mixture. Langmuir, 2017, 33, 13027-13039.	1.6	15
135	The structure of alkyl ester sulfonate surfactant micelles: The impact of different valence electrolytes and surfactant structure on micelle growth. Journal of Colloid and Interface Science, 2019, 557, 124-134.	5.0	15
136	Counterion Condensation, the Gibbs Equation, and Surfactant Binding: An Integrated Description of the Behavior of Polyelectrolytes and Their Mixtures with Surfactants at the Air–Water Interface. Journal of Physical Chemistry B, 2020, 124, 6074-6094.	1,2	15
137	Impact of Model Perfume Molecules on the Self-Assembly of Anionic Surfactant Sodium Dodecyl 6-Benzene Sulfonate. Langmuir, 2013, 29, 3234-3245.	1.6	14
138	Adsorption of Model Perfumes at the Air–Solution Interface by Coadsorption with an Anionic Surfactant. Langmuir, 2013, 29, 3361-3369.	1.6	14
139	Probing the surface of aqueous surfactant-perfume mixed solutions during perfume evaporation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 178-183.	2.3	14
140	Impact of molecular structure, headgroup and alkyl chain geometry, on the adsorption of the anionic ester sulfonate surfactants at the air-solution interface, in the presence and absence of electrolyte. Journal of Colloid and Interface Science, 2019, 544, 293-302.	5.0	14
141	Adsorption properties of plant based bio-surfactants: Insights from neutron scattering techniques. Advances in Colloid and Interface Science, 2019, 274, 102041.	7.0	13
142	The structure and composition of surfactant-polymer mixtures of sodium dodecyl sulphate, hexaethylene glycol monododecyl ether and poly-(dimethyldialyl ammonium chloride) adsorbed at the air-water interface. Journal of Physics Condensed Matter, 2000, 12, 6023-6038.	0.7	12
143	Transition from Vesicles to Small Nanometer Scaled Vesicles, Arising from the Manipulation of Curvature in Dialkyl Chain Cationic/Nonionic Surfactant Mixed Aggregates by the Addition of Straight Chain Alkanols. Langmuir, 2009, 25, 4934-4944.	1.6	12
144	Solution pH and Oligoamine Molecular Weight Dependence of the Transition from Monolayer to Multilayer Adsorption at the Air–Water Interface from Sodium Dodecyl Sulfate/Oligoamine Mixtures. Langmuir, 2013, 29, 5832-5840.	1.6	12

#	Article	IF	CITATIONS
145	The impact of alkyl sulfate surfactant geometry and electrolyte on the co-adsorption of anionic surfactants with model perfumes at the air–solution interface. Journal of Colloid and Interface Science, 2013, 403, 84-90.	5.0	12
146	pH Sensitive Adsorption of Polypeptide/Sodium Dodecyl Sulfate Mixtures. Langmuir, 2006, 22, 7617-7621.	1.6	11
147	Multivalent-Counterion-Induced Surfactant Multilayer Formation at Hydrophobic and Hydrophilic Solid–Solution Interfaces. Langmuir, 2015, 31, 6773-6781.	1.6	11
148	Biogenic amine – Surfactant interactions at the air–water interface. Journal of Colloid and Interface Science, 2015, 449, 167-174.	5.0	11
149	Enhanced perfume surface delivery to interfaces using surfactant surface multilayer structures. Journal of Colloid and Interface Science, 2016, 461, 352-358.	5.0	11
150	Self-assembly in saponin mixtures: Escin/tea, tea/glycyrrhizic acid, and escin/glycyrrhizic acid mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127420.	2.3	11
151	Surfactant self-assembly structures and multilayer formation at the solid-solution interface induces by electrolyte, polymers and proteins. Current Opinion in Colloid and Interface Science, 2022, 57, 101541.	3.4	11
152	The role of competitive counterion adsorption on the electrolyte induced surface ordering in methyl ester sulfonate surfactants at the air-water interface. Journal of Colloid and Interface Science, 2019, 533, 154-160.	5.0	10
153	The performance of surfactant mixtures at low temperatures. Journal of Colloid and Interface Science, 2019, 534, 64-71.	5.0	10
154	Sodium Dodecyl Sulfate–Ethoxylated Polyethylenimine Adsorption at the Air–Water Interface: How the Nature of Ethoxylation Affects the Pattern of Adsorption. Langmuir, 2014, 30, 9761-9769.	1.6	9
155	Nature of the Intermicellar Interactions in Ethoxylated Polysorbate Surfactants with High Degrees of Ethoxylation. Langmuir, 2016, 32, 1319-1326.	1.6	9
156	Multivalent electrolyte induced surface ordering and solution self-assembly in anionic surfactant mixtures: Sodium dodecyl sulfate and sodium diethylene glycol monododecyl sulfate. Journal of Colloid and Interface Science, 2020, 565, 567-581.	5.0	9
157	Self-assembly in saponin/surfactant mixtures: Escin and sodium dodecylsulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127019.	2.3	9
158	Self-assembly in escin-nonionic surfactant mixtures: From micelles to vesicles. Journal of Colloid and Interface Science, 2022, 626, 305-313.	5.0	9
159	The limitations of models of surfactant mixing at interfaces as revealed by neutron scattering. Physical Chemistry Chemical Physics, 2013, 15, 7017.	1.3	8
160	The Effect of Temperature on the Adsorption of Nonâ€lonic Surfactants and Nonâ€lonic Surfactant Mixtures at the Airâ€Water Interface. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 218-223.	0.9	7
161	Surface Activity of Ethoxylate Surfactants with Different Hydrophobic Architectures: The Effect of Layer Substructure on Surface Tension and Adsorption. Langmuir, 2021, 37, 9269-9280.	1.6	7
162	Implications of surfactant hydrophobic chain architecture on the Surfactant-Skin lipid model interaction. Journal of Colloid and Interface Science, 2022, 608, 405-415.	5.0	7

#	Article	IF	CITATIONS
163	Self-assembly of Quillaja saponin mixtures with different conventional synthetic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127854.	2.3	7
164	Neutron reflection and the thermodynamics of the air–water interface. Physical Chemistry Chemical Physics, 2022, 24, 8553-8577.	1.3	7
165	The effects of the addition of the polyelectrolyte, poly(ethyleneimine), on the adsorption of mixed surfactants of sodium dodecylsulfate and dodecyldimethylaminoacetate at the air–water interface. Journal of Colloid and Interface Science, 2011, 356, 647-655.	5.0	6
166	Adsorption of hydrophobin/β-casein mixtures at the solid-liquid interface. Journal of Colloid and Interface Science, 2016, 478, 81-87.	5. 0	6
167	Impact of biogenic amine molecular weight and structure on surfactant adsorption at the air–water interface. Journal of Colloid and Interface Science, 2016, 463, 199-206.	5.0	6
168	Unusual Maximum in the Adsorption of Aqueous Surfactant Mixtures: Neutron Reflectometry of Mixtures of Zwitterionic and Ionic Surfactants at the Silica–Aqueous Interface. Langmuir, 2021, 37, 3939-3949.	1.6	6
169	Adsorption of the Linear Poly(ethyleneimine) Precursor Poly(2-ethyl-2-oxazoline) and Sodium Dodecyl Sulfate Mixtures at the Air–Water Interface: The Impact of Modification of the Poly(ethyleneimine) Functionality. Langmuir, 2012, 28, 17331-17338.	1.6	4
170	Collapsed Structure of Hydrophobically Modified Polyacrylamide Adsorbed at the Air–Water Interface: The Polymer Surface Excess and the Gibbs Equation. Langmuir, 2020, 36, 11661-11675.	1.6	4
171	α-Sulfo alkyl ester surfactants: Impact of changing the alkyl chain length on the adsorption, mixing properties and response to electrolytes of the tetradecanoate. Journal of Colloid and Interface Science, 2021, 586, 876-890.	5.0	4
172	Multivalent counterion induced multilayer adsorption at the air-water interface in dilute Aerosol-OT solutions. Journal of Colloid and Interface Science, 2021, 597, 223-232.	5.0	4
173	Probing Surfactant Adsorption at the Solid–Solution Interface by Neutron Reflectometry. Interface Science and Technology, 2007, , 87-115.	1.6	3
174	Anionic surfactant $\hat{a} \in \text{``Biogenic amine interactions: The role of surfactant headgroup geometry.}$ Journal of Colloid and Interface Science, 2016, 466, 213-219.	5.0	3