
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3676099/publications.pdf Version: 2024-02-01

DASCAL FINETT

#	Article	IF	CITATIONS
1	Breast Cancer Cell Lines Contain Functional Cancer Stem Cells with Metastatic Capacity and a Distinct Molecular Signature. Cancer Research, 2009, 69, 1302-1313.	0.9	1,067
2	How basal are tripleâ€negative breast cancers?. International Journal of Cancer, 2008, 123, 236-240.	5.1	384
3	Gene Expression Profiling Shows Medullary Breast Cancer Is a Subgroup of Basal Breast Cancers. Cancer Research, 2006, 66, 4636-4644.	0.9	273
4	<i>H19</i> non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget, 2015, 6, 29209-29223.	1.8	193
5	Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis. Oncolmmunology, 2017, 6, e1253654.	4.6	146
6	Down-Regulation of ECRG4, a Candidate Tumor Suppressor Gene, in Human Breast Cancer. PLoS ONE, 2011, 6, e27656.	2.5	143
7	A stemness-related ZEB1–MSRB3 axis governs cellular pliancy and breast cancer genome stability. Nature Medicine, 2017, 23, 568-578.	30.7	131
8	Uncovering the Molecular Secrets of Inflammatory Breast Cancer Biology: An Integrated Analysis of Three Distinct Affymetrix Gene Expression Datasets. Clinical Cancer Research, 2013, 19, 4685-4696.	7.0	130
9	miR-600 Acts as a Bimodal Switch that Regulates Breast Cancer Stem Cell Fate through WNT Signaling. Cell Reports, 2017, 18, 2256-2268.	6.4	111
10	Sixteen–Kinase Gene Expression Identifies Luminal Breast Cancers with Poor Prognosis. Cancer Research, 2008, 68, 767-776.	0.9	105
11	PDL1 expression is an independent prognostic factor in localized GIST. Oncolmmunology, 2015, 4, e1002729.	4.6	75
12	Comparative genomic analysis of primary tumors and metastases in breast cancer. Oncotarget, 2016, 7, 27208-27219.	1.8	69
13	The Functional Landscape of Hsp27 Reveals New Cellular Processes such as DNA Repair and Alternative Splicing and Proposes Novel Anticancer Targets. Molecular and Cellular Proteomics, 2014, 13, 3585-3601.	3.8	65
14	PDL1 expression is a poor-prognosis factor in soft-tissue sarcomas. Oncolmmunology, 2017, 6, e1278100.	4.6	65
15	Decreased expression of ABAT and STC2 hallmarks ERâ€positive inflammatory breast cancer and endocrine therapy resistance in advanced disease. Molecular Oncology, 2015, 9, 1218-1233.	4.6	64
16	A 25-gene classifier predicts overall survival in resectable pancreatic cancer. BMC Medicine, 2017, 15, 170.	5.5	64
17	PRICKLE1 Contributes to Cancer Cell Dissemination through Its Interaction with mTORC2. Developmental Cell, 2016, 37, 311-325.	7.0	63
18	Oncogenic states dictate the prognostic and predictive connotations of intratumoral immune		57

response. , 2020, 8, e000617.

#	Article	IF	CITATIONS
19	High-Resolution Comparative Genomic Hybridization of Inflammatory Breast Cancer and Identification of Candidate Genes. PLoS ONE, 2011, 6, e16950.	2.5	57
20	The immunologic constant of rejection classification refines the prognostic value of conventional prognostic signatures in breast cancer. British Journal of Cancer, 2018, 119, 1383-1391.	6.4	54
21	Kinome expression profiling and prognosis of basal breast cancers. Molecular Cancer, 2011, 10, 86.	19.2	46
22	EndoPredict predicts for the response to neoadjuvant chemotherapy in ER-positive, HER2-negative breast cancer. Cancer Letters, 2014, 355, 70-75.	7.2	44
23	Poly(ADP-Ribose) Polymerase 1 (PARP1) Overexpression in Human Breast Cancer Stem Cells and Resistance to Olaparib. PLoS ONE, 2014, 9, e104302.	2.5	43
24	PDL1 expression is associated with longer postoperative, survival in adrenocortical carcinoma. Oncolmmunology, 2019, 8, e1655362.	4.6	39
25	8q24 Cancer Risk Allele Associated with Major Metastatic Risk in Inflammatory Breast Cancer. PLoS ONE, 2012, 7, e37943.	2.5	34
26	Sensitive and easy screening for circulating tumor cells by flow cytometry. JCI Insight, 2019, 4, .	5.0	31
27	A genomeâ€wide <scp>RNA</scp> i screen reveals essential therapeutic targets of breast cancer stem cells. EMBO Molecular Medicine, 2019, 11, e9930.	6.9	27
28	The therapeutic response of ER+/HER2â^' breast cancers differs according to the molecular Basal or Luminal subtype. Npj Breast Cancer, 2020, 6, 8.	5.2	27
29	Enhancement of Breast Cancer Cell Aggressiveness by IncRNA H19 and its Mir-675 Derivative: Insight into Shared and Different Actions. Cancers, 2020, 12, 1730.	3.7	26
30	EFA6B Antagonizes Breast Cancer. Cancer Research, 2014, 74, 5493-5506.	0.9	25
31	Characterization and Targeting of Platelet-Derived Growth Factor Receptor alpha (PDGFRA) in Inflammatory Breast Cancer (IBC). Neoplasia, 2017, 19, 564-573.	5.3	25
32	Prospective high-throughput genome profiling of advanced cancers: results of the PERMED-01 clinical trial. Genome Medicine, 2021, 13, 87.	8.2	24
33	NOTCH and DNA repair pathways are more frequently targeted by genomic alterations in inflammatory than in nonâ€inflammatory breast cancers. Molecular Oncology, 2020, 14, 504-519.	4.6	23
34	Immune landscape of inflammatory breast cancer suggests vulnerability to immune checkpoint inhibitors. Oncolmmunology, 2021, 10, 1929724.	4.6	22
35	Expression of X-Linked Inhibitor of Apoptosis Protein (XIAP) in Breast Cancer Is Associated with Shorter Survival and Resistance to Chemotherapy. Cancers, 2021, 13, 2807.	3.7	19
36	Lipocalin 2 promotes inflammatory breast cancer tumorigenesis and skin invasion. Molecular Oncology, 2021, 15, 2752-2765.	4.6	19

#	Article	IF	CITATIONS
37	The SCRIB Paralog LANO/LRRC1 Regulates Breast Cancer Stem Cell Fate through WNT/β-Catenin Signaling. Stem Cell Reports, 2018, 11, 1040-1050.	4.8	18
38	Inflammatory breast cancer cells are characterized by abrogated TGFβ1-dependent cell motility and SMAD3 activity. Breast Cancer Research and Treatment, 2020, 180, 385-395.	2.5	18
39	Development of parallel reaction monitoring (PRM)-based quantitative proteomics applied to HER2-Positive breast cancer. Oncotarget, 2018, 9, 33762-33777.	1.8	17
40	PARP1 expression in soft tissue sarcomas is a poorâ€prognosis factor and a new potential therapeutic target. Molecular Oncology, 2019, 13, 1577-1588.	4.6	15
41	Immunologic constant of rejection signature is prognostic in soft-tissue sarcoma and refines the CINSARC signature. , 2022, 10, e003687.		15
42	Revisiting the Concept of Stress in the Prognosis of Solid Tumors: A Role for Stress Granules Proteins?. Cancers, 2020, 12, 2470.	3.7	14
43	Cancer-testis Antigen FATE1 Expression in Adrenocortical Tumors Is Associated with A Pervasive Autoimmune Response and Is A Marker of Malignancy in Adult, but Not Children, ACC. Cancers, 2020, 12, 689.	3.7	14
44	ECT2 associated to PRICKLE1 are poor-prognosis markers in triple-negative breast cancer. British Journal of Cancer, 2019, 120, 931-940.	6.4	13
45	BMI1 nuclear location is critical for RAD51-dependent response to replication stress and drives chemoresistance in breast cancer stem cells. Cell Death and Disease, 2022, 13, 96.	6.3	13
46	Overcoming Resistance to Anti–Nectin-4 Antibody-Drug Conjugate. Molecular Cancer Therapeutics, 2022, 21, 1227-1235.	4.1	13
47	Epigenetic down-regulation of the HIST1 locus predicts better prognosis in acute myeloid leukemia with NPM1 mutation. Clinical Epigenetics, 2019, 11, 141.	4.1	11
48	Neoplastic–Stromal Cell Cross-talk Regulates Matrisome Expression in Pancreatic Cancer. Molecular Cancer Research, 2020, 18, 1889-1902.	3.4	11
49	Cyclin A2 maintains colon homeostasis and is a prognostic factor in colorectal cancer. Journal of Clinical Investigation, 2021, 131, .	8.2	11
50	Overexpression of Annexin A1 Is an Independent Predictor of Longer Overall Survival in Epithelial Ovarian Cancer. In Vivo, 2020, 34, 177-184.	1.3	10
51	Transcriptomic Analysis of Laser Capture Microdissected Tumors Reveals Cancer- and Stromal-Specific Molecular Subtypes of Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2021, 27, 2314-2325.	7.0	10
52	Menin inhibition suppresses castration-resistant prostate cancer and enhances chemosensitivity. Oncogene, 2022, 41, 125-137.	5.9	10
53	Novel Therapeutic Insights in Dedifferentiated Liposarcoma: A Role for FGFR and MDM2 Dual Targeting. Cancers, 2020, 12, 3058.	3.7	9
54	RE: NDRG1 in Aggressive Breast Cancer Progression and Brain Metastasis. Journal of the National Cancer Institute, 2022, 114, 1046-1047.	6.3	9

#	Article	IF	CITATIONS
55	WEE1 Dependency and Pejorative Prognostic Value in Tripleâ€Negative Breast Cancer. Advanced Science, 2021, 8, e2101030.	11.2	8
56	A Tyrosine Kinase Expression Signature Predicts the Post-Operative Clinical Outcome in Triple Negative Breast Cancers. Cancers, 2019, 11, 1158.	3.7	6
57	LDL receptor-peptide conjugate as in vivo tool for specific targeting of pancreatic ductal adenocarcinoma. Communications Biology, 2021, 4, 987.	4.4	6
58	Comparative transcriptional analyses of preclinical models and patient samples reveal MYC and RELA driven expression patterns that define the molecular landscape of IBC. Npj Breast Cancer, 2022, 8, 12.	5.2	6
59	Identification of Atypical Circulating Tumor Cells with Prognostic Value in Metastatic Breast Cancer Patients. Cancers, 2022, 14, 932.	3.7	5
60	"Wnt/β-Catenin in GISTâ€â€"Letter. Molecular Cancer Therapeutics, 2018, 17, 327-328.	4.1	4
61	Difference in Therapeutic Response Between Basal and Nonbasal Tripleâ€Negative Breast Cancers. Oncologist, 2013, 18, 1060-1061.	3.7	3
62	CSPG4 Expression in GIST Is Associated with Better Prognosis and Strong Cytotoxic Immune Response. Cancers, 2022, 14, 1306.	3.7	3
63	Wnt Signaling Inhibition Promotes Apoptosis in Sarcomas—Letter. Molecular Cancer Therapeutics, 2017, 16, 2324-2324.	4.1	2
64	EFA6B regulates a stop signal for collective invasion in breast cancer. Nature Communications, 2021, 12, 2198.	12.8	2
65	CISH Expression Is Associated with Metastasis-Free Interval in Triple-Negative Breast Cancer and Refines the Prognostic Value of PDL1 Expression. Cancers, 2022, 14, 3356.	3.7	2
66	Theranostic Targeting of CUB Domain Containing Protein 1 (CDCP1) in Pancreatic Cancer—Letter. Clinical Cancer Research, 2020, 26, 5539-5539.	7.0	0
67	Molecular Profiles of Advanced Urological Cancers in the PERMED-01 Precision Medicine Clinical Trial. Cancers, 2022, 14, 2275.	3.7	0