
Irving Biederman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3675932/publications.pdf Version: 2024-02-01

IDVING RIEDEDMAN

#	Article	IF	CITATIONS
1	Recognition-by-components: A theory of human image understanding Psychological Review, 1987, 94, 115-147.	3.8	4,803
2	Dynamic binding in a neural network for shape recognition Psychological Review, 1992, 99, 480-517.	3.8	987
3	Scene perception: Detecting and judging objects undergoing relational violations. Cognitive Psychology, 1982, 14, 143-177.	2.2	971
4	Surface versus edge-based determinants of visual recognition. Cognitive Psychology, 1988, 20, 38-64.	2.2	575
5	Recognizing depth-rotated objects: Evidence and conditions for three-dimensional viewpoint invariance Journal of Experimental Psychology: Human Perception and Performance, 1993, 19, 1162-1182.	0.9	495
6	Priming contour-deleted images: Evidence for intermediate representations in visual object recognition. Cognitive Psychology, 1991, 23, 393-419.	2.2	381
7	Evidence for Complete Translational and Reflectional Invariance in Visual Object Priming. Perception, 1991, 20, 585-593.	1.2	352
8	Size invariance in visual object priming Journal of Experimental Psychology: Human Perception and Performance, 1992, 18, 121-133.	0.9	337
9	Neurocomputational bases of object and face recognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 1203-1219.	4.0	217
10	Viewpoint-dependent mechanisms in visual object recognition: Reply to Tarr and Bülthoff (1995) Journal of Experimental Psychology: Human Perception and Performance, 1995, 21, 1506-1514.	0.9	195
11	One-shot viewpoint invariance in matching novel objects. Vision Research, 1999, 39, 2885-2899.	1.4	172
12	Making the ineffable explicit: estimating the information employed for face classifications. Cognitive Science, 2004, 28, 209-226.	1.7	126
13	Shape Tuning in Macaque Inferior Temporal Cortex. Journal of Neuroscience, 2003, 23, 3016-3027.	3.6	108
14	Metric invariance in object recognition: A review and further evidence Canadian Journal of Psychology, 1992, 46, 191-214.	0.8	98
15	What makes faces special?. Vision Research, 2006, 46, 3802-3811.	1.4	88
16	Inferior Temporal Neurons Show Greater Sensitivity to Nonaccidental than to Metric Shape Differences. Journal of Cognitive Neuroscience, 2001, 13, 444-453.	2.3	87
17	Neural evidence for intermediate representations in object recognition. Vision Research, 2006, 46, 4024-4031.	1.4	84
18	Recognizing depth-rotated objects: A review of recent research and theory. Spatial Vision, 2000, 13, 241-253.	1.4	74

Irving Biederman

#	Article	IF	CITATIONS
19	Representation of Regular and Irregular Shapes in Macaque Inferotemporal Cortex. Cerebral Cortex, 2005, 15, 1308-1321.	2.9	73
20	Ha Ha! Versus Aha! A Direct Comparison of Humor to Nonhumorous Insight for Determining the Neural Correlates of Mirth. Cerebral Cortex, 2015, 25, 1405-1413.	2.9	72
21	Subordinate-level object classification reexamined. Psychological Research, 1999, 62, 131-153.	1.7	62
22	Cortical Representation of Medial Axis Structure. Cerebral Cortex, 2013, 23, 629-637.	2.9	61
23	Adaptation to objects in the lateral occipital complex (LOC): Shape or semantics?. Vision Research, 2009, 49, 2297-2305.	1.4	56
24	Loci of the release from fMRI adaptation for changes in facial expression, identity, and viewpoint. Journal of Vision, 2010, 10, 36-36.	0.3	51
25	Predicting the psychophysical similarity of faces and non-face complex shapes by image-based measures. Vision Research, 2012, 55, 41-46.	1.4	48
26	To what extent can matching algorithms based on direct outputs of spatial filters account for human object recognition?. Spatial Vision, 1996, 10, 237-271.	1.4	47
27	Invariance of long-term visual priming to scale, reflection, translation, and hemisphere. Vision Research, 2001, 41, 221-234.	1.4	47
28	Adaptation in the fusiform face area (FFA): Image or person?. Vision Research, 2009, 49, 2800-2807.	1.4	47
29	The deleterious effect of contrast reversal on recognition is unique to faces, not objects. Vision Research, 2007, 47, 2134-2142.	1.4	46
30	Effects of Illumination Intensity and Direction on Object Coding in Macaque Inferior Temporal Cortex. Cerebral Cortex, 2002, 12, 756-766.	2.9	45
31	Accurate identification but no priming and chance recognition memory for pictures in RSVP sequences. Visual Cognition, 2000, 7, 511-535.	1.6	44
32	Making the ineffable explicit: estimating the information employed for face classifications. Cognitive Science, 2004, 28, 209-226.	1.7	44
33	Size Invariance in Visual Object Priming of Gray-Scale Images. Perception, 1995, 24, 741-748.	1.2	40
34	Do Humans and Baboons Use the Same Information When Categorizing Human and Baboon Faces?. Psychological Science, 2006, 17, 599-607.	3.3	39
35	Sensitivity to nonaccidental properties across various shape dimensions. Vision Research, 2012, 62, 35-43.	1.4	38
36	The Neural Correlates of Humor Creativity. Frontiers in Human Neuroscience, 2016, 10, 597.	2.0	36

IRVING BIEDERMAN

#	Article	IF	CITATIONS
37	The neural basis for shape preferences. Vision Research, 2011, 51, 2198-2206.	1.4	34
38	The pigeon's recognition of drawings of depth-rotated stimuli Journal of Experimental Psychology, 1996, 22, 205-221.	1.7	29
39	Representation of Shape in Individuals From a Culture With Minimal Exposure to Regular, Simple Artifacts: Sensitivity to Nonaccidental Versus Metric Properties. Psychological Science, 2009, 20, 1437-1442.	3.3	28
40	Less impairment in face imagery than face perception in early prosopagnosia. Neuropsychologia, 2003, 41, 421-441.	1.6	27
41	Pigeons and humans are more sensitive to nonaccidental than to metric changes in visual objects. Behavioural Processes, 2008, 77, 199-209.	1.1	27
42	Seeing things from a different angle: The pigeon's recognition of single geons rotated in depth Journal of Experimental Psychology, 2000, 26, 115-132.	1.7	24
43	Effects of varying stimulus size on object recognition in pigeons Journal of Experimental Psychology, 2006, 32, 419-430.	1.7	24
44	Discrimination of geons by pigeons: The effects of variations in surface depiction. Learning and Behavior, 2001, 29, 97-106.	3.4	23
45	Learning an object from multiple views enhances its recognition in an orthogonal rotational axis in pigeons. Vision Research, 2002, 42, 2051-2062.	1.4	23
46	Size tuning in the absence of spatial frequency tuning in object recognition. Vision Research, 2001, 41, 1931-1950.	1.4	22
47	Greater sensitivity to nonaccidental than metric changes in the relations between simple shapes in the lateral occipital cortex. NeuroImage, 2012, 63, 1818-1826.	4.2	20
48	An applet for the Gabor similarity scaling of the differences between complex stimuli. Attention, Perception, and Psychophysics, 2016, 78, 2298-2306.	1.3	19
49	Differing views on views: response to Hayward and Tarr (2000). Vision Research, 2000, 40, 3901-3905.	1.4	18
50	17000 Years of Depicting the Junction of Two Smooth Shapes. Perception, 2008, 37, 161-164.	1.2	18
51	Biederman and Cooper's 1991 Paper. Perception, 2009, 38, 809-825.	1.2	17
52	Greater sensitivity to nonaccidental than metric shape properties in preschool children. Vision Research, 2014, 97, 83-88.	1.4	17
53	Developmental phonagnosia: Neural correlates and a behavioral marker. Brain and Language, 2015, 149, 106-117.	1.6	16
54	An estimate of the prevalence of developmental phonagnosia. Brain and Language, 2016, 159, 84-91.	1.6	15

IRVING BIEDERMAN

#	Article	IF	CITATIONS
55	The Lateral Occipital Complex shows no net response to object familiarity. Journal of Vision, 2016, 16, 3.	0.3	12
56	What Is Actually Affected by the Scrambling of Objects When Localizing the Lateral Occipital Complex?. Journal of Cognitive Neuroscience, 2017, 29, 1595-1604.	2.3	12
57	A neurocomputational account of the face configural effect. Journal of Vision, 2014, 14, 9-9.	0.3	11
58	Neural Correlates of Face Detection. Cerebral Cortex, 2014, 24, 1555-1564.	2.9	10
59	A face in a (temporal) crowd. Vision Research, 2019, 157, 55-60.	1.4	8
60	Recent Psychophysical and Neural Research in Shape Recognition. , 2007, , 71-88.		8
61	Pattern goodness and pattern recognition , 0, , 73-95.		8
62	The cognitive neuroscience of person identification. Neuropsychologia, 2018, 116, 205-214.	1.6	7
63	A cross-cultural study of the representation of shape: Sensitivity to generalized cone dimensions. Visual Cognition, 2010, 18, 50-66.	1.6	6
64	Pigeons spontaneously form three-dimensional shape categories. Behavioural Processes, 2019, 158, 70-76.	1.1	5
65	What is the Perceptual Deficit in Developmental Prosopagnosia?. Journal of Vision, 2017, 17, 619.	0.3	3
66	Can Familiar Faces be Negatively Detected at RSVP Rates?. Journal of Vision, 2017, 17, 1027.	0.3	2
67	Effective signaling of surface boundaries by L-vertices reflect the consistency of their contrast in natural images. Journal of Vision, 2016, 16, 15.	0.3	1
68	On the Relation between Kanizsa's Bias Towards Convexity and the Gestaltists PrÃǥnanz from the Perspective of Current in Shape Recognition. Axiomathes, 2002, 13, 329-346.	0.6	0
69	Using the reassignment procedure to test object representation in pigeons and people. Learning and Behavior, 2015, 43, 188-207.	1.0	Ο
70	Visual noise consisting of X-junctions has only a minimal adverse effect on object recognition. Attention, Perception, and Psychophysics, 2020, 82, 995-1002.	1.3	0
71	Vision: A Product of a Society of Independent Experts. Current Biology, 2020, 30, R1043-R1045.	3.9	Ο
79	Coope 2021 526 525		0

#	Article	IF	CITATIONS
73	Geons. , 2014, , 338-346.		0
74	The Capacity for Face Perception is Independent of the Capacity for Face Memory. Journal of Vision, 2019, 19, 139a.	0.3	0
75	Congenital Prosopagnosics Show Reduced Configural Effects in an Odd-Man-Out Detection Task. Journal of Vision, 2019, 19, 22c.	0.3	0
76	The sizable difficulty in matching unfamiliar faces differing only moderately in orientation in depth is a function of image dissimilarity. Vision Research, 2022, 194, 107959.	1.4	0