List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3675251/publications.pdf Version: 2024-02-01

FELLY FDELDE

#	Article	IF	CITATIONS
1	The Role of Polymer–AuNP Interaction in the Stimuliâ€Response Properties of PPA–AuNP Nanocomposites. Macromolecular Rapid Communications, 2022, 43, e2100616.	3.9	4
2	Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angewandte Chemie - International Edition, 2022, , .	13.8	18
3	Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angewandte Chemie, 2022, 134, .	2.0	5
4	Titelbild: Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence (Angew. Chem. 9/2022). Angewandte Chemie, 2022, 134, .	2.0	0
5	Elucidating the Supramolecular Copolymerization of N―and Câ€Centered Benzeneâ€1,3,5â€Tricarboxamides: The Role of Parallel and Antiparallel Packing of Amide Groups in the Copolymer Microstructure. Chemistry - A European Journal, 2022, 28, .	3.3	13
6	Photostability and Dynamic Helical Behavior in Chiral Poly(phenylacetylene)s with a Preferred Screw‣ense. Angewandte Chemie, 2022, 134, .	2.0	2
7	Photochemical Electrocyclization of Poly(phenylacetylene)s: Unwinding Helices to Elucidate their 3D Structure in Solution. Angewandte Chemie, 2021, 133, 8176-8184.	2.0	8
8	Photochemical Electrocyclization of Poly(phenylacetylene)s: Unwinding Helices to Elucidate their 3D Structure in Solution. Angewandte Chemie - International Edition, 2021, 60, 8095-8103.	13.8	19
9	Titelbild: Photochemical Electrocyclization of Poly(phenylacetylene)s: Unwinding Helices to Elucidate their 3D Structure in Solution (Angew. Chem. 15/2021). Angewandte Chemie, 2021, 133, 8061-8061.	2.0	0
10	The Competitive Aggregation Pathway of an Asymmetric Chiral Oligo(<i>p</i> â€phenyleneethynylene) Towards the Formation of Individual <i>P</i> and <i>M</i> Supramolecular Helical Polymers. Angewandte Chemie - International Edition, 2021, 60, 9919-9924.	13.8	31
11	The Competitive Aggregation Pathway of an Asymmetric Chiral Oligo(<i>p</i> â€phenyleneethynylene) Towards the Formation of Individual <i>P</i> and <i>M</i> Supramolecular Helical Polymers. Angewandte Chemie, 2021, 133, 10007-10012.	2.0	1
12	Dynamic Chiral PPA–AgNP Nanocomposites: Aligned Silver Nanoparticles Decorating Helical Polymers. Chemistry of Materials, 2021, 33, 4805-4812.	6.7	18
13	From Oligo(Phenyleneethynylene) Monomers to Supramolecular Helices: The Role of Intermolecular Interactions in Aggregation. Molecules, 2021, 26, 3530.	3.8	2
14	Tuning the helical sense and elongation of polymers through the combined action of the two components of tetraalkylammonium-anion salts. Giant, 2021, 7, 100068.	5.1	16
15	Merging Supramolecular and Covalent Helical Polymers: Four Helices Within a Single Scaffold. Journal of the American Chemical Society, 2021, 143, 20962-20969.	13.7	25
16	Chiral gold–PPA nanocomposites with tunable helical sense and morphology. Nanoscale Horizons, 2020, 5, 495-500.	8.0	17
17	Chiral Overpass Induction in Dynamic Helical Polymers Bearing Pendant Groups with Two Chiral Centers. Angewandte Chemie, 2020, 132, 4567-4573.	2.0	13
18	Chiral Overpass Induction in Dynamic Helical Polymers Bearing Pendant Groups with Two Chiral Centers. Angewandte Chemie - International Edition, 2020, 59, 4537-4543.	13.8	39

#	Article	IF	CITATIONS
19	From Sergeants and Soldiers to Chiral Conflict Effects in Helical Polymers by Acting on the Conformational Composition of the Comonomers. Angewandte Chemie, 2020, 132, 23932-23938.	2.0	6
20	From Sergeants and Soldiers to Chiral Conflict Effects in Helical Polymers by Acting on the Conformational Composition of the Comonomers. Angewandte Chemie - International Edition, 2020, 59, 23724-23730.	13.8	26
21	Chiral information harvesting in helical poly(acetylene) derivatives using oligo(<i>p</i> -phenyleneethynylene)s as spacers. Chemical Science, 2020, 11, 7182-7187.	7.4	28
22	A Stimuliâ€Responsive Macromolecular Gear: Interlocking Dynamic Helical Polymers with Foldamers. Angewandte Chemie, 2020, 132, 8694-8700.	2.0	20
23	A Stimuliâ€Responsive Macromolecular Gear: Interlocking Dynamic Helical Polymers with Foldamers. Angewandte Chemie - International Edition, 2020, 59, 8616-8622.	13.8	59
24	Raman Optical Activity (ROA) as a New Tool to Elucidate the Helical Structure of Poly(phenylacetylene)s. Angewandte Chemie - International Edition, 2020, 59, 9080-9087.	13.8	22
25	Raman Optical Activity (ROA) as a New Tool to Elucidate the Helical Structure of Poly(phenylacetylene)s. Angewandte Chemie, 2020, 132, 9165-9172.	2.0	13
26	Polymeric Helical Structures à la Carte by Rational Design of Monomers. Macromolecules, 2020, 53, 3182-3193.	4.8	22
27	Chiral Conflict as a Method to Create Stimuliâ€Responsive Materials Based on Dynamic Helical Polymers. Angewandte Chemie, 2019, 131, 13499-13503.	2.0	20
28	Chiral Conflict as a Method to Create Stimuliâ€Responsive Materials Based on Dynamic Helical Polymers. Angewandte Chemie - International Edition, 2019, 58, 13365-13369.	13.8	45
29	Macromolecular helicity control of poly(phenyl isocyanate)s with a single stimuli-responsive chiral switch. Chemical Communications, 2019, 55, 7906-7909.	4.1	25
30	Three-State Switchable Chiral Stationary Phase Based on Helicity Control of an Optically Active Poly(phenylacetylene) Derivative by Using Metal Cations in the Solid State. Journal of the American Chemical Society, 2019, 141, 8592-8598.	13.7	82
31	Decoding the ECD Spectra of Poly(phenylacetylene)s: Structural Significance. ACS Omega, 2019, 4, 5233-5240.	3.5	32
32	Helical Colorimetric Sensors: Stimuliâ€Directed Colorimetric Interconversion of Helical Polymers Accompanied by a Tunable Selfâ€Assembly Process (Small 13/2019). Small, 2019, 15, 1970070.	10.0	10
33	Stimuliâ€Directed Colorimetric Interconversion of Helical Polymers Accompanied by a Tunable Selfâ€Assembly Process. Small, 2019, 15, 1805413.	10.0	22
34	Multistate Chiroptical Switch Triggered by Stimuli-Responsive Chiral Teleinduction. Chemistry of Materials, 2018, 30, 2493-2497.	6.7	39
35	Sequential Induction of Chirality in Helical Polymers: From the Stereocenter to the Achiral Solvent. Journal of Physical Chemistry Letters, 2018, 9, 2266-2270.	4.6	28
36	Predicting the Helical Sense of Poly(phenylacetylene)s from their Electron Circular Dichroism Spectra. Angewandte Chemie, 2018, 130, 3728-3732.	2.0	16

#	Article	IF	CITATIONS
37	Predicting the Helical Sense of Poly(phenylacetylene)s from their Electron Circular Dichroism Spectra. Angewandte Chemie - International Edition, 2018, 57, 3666-3670.	13.8	44
38	Chiral Coalition in Helical Sense Enhancement of Copolymers: The Role of the Absolute Configuration of Comonomers. Journal of the American Chemical Society, 2018, 140, 667-674.	13.7	39
39	Poly(phenylacetylene) Amines: A General Route to Water-Soluble Helical Polyamines. Chemistry of Materials, 2018, 30, 6908-6914.	6.7	40
40	Chiral-to-Chiral Communication in Polymers: A Unique Approach To Control Both Helical Sense and Chirality at the Periphery. Journal of the American Chemical Society, 2018, 140, 12239-12246.	13.7	47
41	A general route to chiral nanostructures from helical polymers: P/M switch via dynamic metal coordination. Polymer Chemistry, 2017, 8, 3740-3745.	3.9	36
42	Unexpected Chiroâ€Thermoresponsive Behavior of Helical Poly(phenylacetylene)s Bearing Elastinâ€Based Side Chains. Angewandte Chemie, 2017, 129, 11578-11583.	2.0	17
43	Unexpected Chiroâ€Thermoresponsive Behavior of Helical Poly(phenylacetylene)s Bearing Elastinâ€Based Side Chains. Angewandte Chemie - International Edition, 2017, 56, 11420-11425.	13.8	41
44	The role of the secondary structure of helical poly(phenylacetylene)s in the formation of nanoparticles from polymer–metal complexes (HPMCs). Nanoscale, 2017, 9, 17752-17757.	5.6	35
45	Multipodal dynamic coordination involving cation–΀ interactions to control the structure of helical polymers. Chemical Communications, 2017, 53, 8573-8576.	4.1	30
46	Chiral nanostructure in polymers under different deposition conditions observed using atomic force microscopy of monolayers: poly(phenylacetylene)s as a case study. Chemical Communications, 2017, 53, 481-492.	4.1	43
47	Simultaneous Adjustment of Size and Helical Sense of Chiral Nanospheres and Nanotubes Derived from an Axially Racemic Poly(phenylacetylene). Small, 2017, 13, 1602398.	10.0	26
48	Chiral Nanostructures from Helical Copolymer-Metal Complexes: Tunable Cation-Ï€ Interactions and Sergeants and Soldiers Effect. Small, 2016, 12, 238-244.	10.0	43
49	Enantiomeric Nanostructures: Chiral Nanostructures from Helical Copolymer-Metal Complexes: Tunable Cation-ï€ Interactions and Sergeants and Soldiers Effect (Small 2/2016). Small, 2016, 12, 237-237.	10.0	0
50	Architecture of Chiral Poly(phenylacetylene)s: From Compressed/Highly Dynamic to Stretched/Quasi-Static Helices. Journal of the American Chemical Society, 2016, 138, 9620-9628.	13.7	93
51	Helical sense selective domains and enantiomeric superhelices generated by Langmuir–Schaefer deposition of an axially racemic chiral helical polymer. Nanoscale, 2016, 8, 3362-3367.	5.6	34
52	Supramolecular Assemblies from Poly(phenylacetylene)s. Chemical Reviews, 2016, 116, 1242-1271.	47.7	233
53	The leading role of cation–΀ interactions in polymer chemistry: the control of the helical sense in solution. Polymer Chemistry, 2015, 6, 4725-4733.	3.9	55
54	Reversible assembly of enantiomeric helical polymers: from fibers to gels. Chemical Science, 2015, 6, 246-253.	7.4	42

#	Article	IF	CITATIONS
55	The ON/OFF switching by metal ions of the "Sergeants and Soldiers―chiral amplification effect on helical poly(phenylacetylene)s. Chemical Science, 2014, 5, 2170-2176.	7.4	71
56	Nanospheres, Nanotubes, Toroids, and Gels with Controlled Macroscopic Chirality. Angewandte Chemie - International Edition, 2014, 53, 13720-13724.	13.8	66
57	Controlled modulation of the helical sense and the elongation of poly(phenylacetylene)s by polar and donor effects. Chemical Science, 2013, 4, 2735.	7.4	111
58	Helical Polymer–Metal Complexes: The Role of Metal Ions on the Helicity and the Supramolecular Architecture of Poly(phenylacetylene)s. Advances in Polymer Science, 2013, , 123-140.	0.8	20
59	Nanospheres with Tunable Size and Chirality from Helical Polymer–Metal Complexes. Journal of the American Chemical Society, 2012, 134, 19374-19383.	13.7	99
60	Macrocyclic Design Strategies for Small, Stable Parallel β-Sheet Scaffolds. Journal of the American Chemical Society, 2011, 133, 12318-12318.	13.7	6
61	Impact of Strand Length on the Stability of Parallelâ€Î²â€Sheet Secondary Structure. Angewandte Chemie - International Edition, 2011, 50, 8735-8738.	13.8	21
62	Chiral Amplification and Helical‧ense Tuning by Mono―and Divalent Metals on Dynamic Helical Polymers. Angewandte Chemie - International Edition, 2011, 50, 11692-11696.	13.8	150
63	Chiral 1,2-Diols: The Assignment of Their Absolute Configuration by NMR Made Easy. Organic Letters, 2010, 12, 208-211.	4.6	36
64	The Stereochemistry of 1,2,3â€Triols Revealed by ¹ Hâ€NMR Spectroscopy: Principles and Applications. Chemistry - A European Journal, 2009, 15, 11963-11975.	3.3	19
65	Macrocyclic Design Strategies for Small, Stable Parallel β-Sheet Scaffolds. Journal of the American Chemical Society, 2009, 131, 7970-7972.	13.7	38
66	In tube determination of the absolute configuration of α- and β-hydroxy acids by NMR via chiral BINOL borates. Chemical Communications, 2008, , 4147.	4.1	40
67	Diacid Linkers That Promote Parallel β-Sheet Secondary Structure in Water. Journal of the American Chemical Society, 2008, 130, 7839-7841.	13.7	32
68	The Pattern of Distribution of Amino Groups Modulates the Structure and Dynamics of Natural Aminoglycosides:  Implications for RNA Recognition. Journal of the American Chemical Society, 2007, 129, 2849-2865.	13.7	44
69	A simple NMR analysis of the protonation equilibrium that accompanies aminoglycoside recognition: Dramatic alterations in the neomycin-B protonation state upon binding to a 23-mer RNA aptamer. Chemical Communications, 2007, , 174-176.	4.1	23
70	Challenging the absence of observable hydrogens in the assignment of absolute configurations by NMR: application to chiral primary alcohols. Chemical Communications, 2007, , 1456-1458.	4.1	31
71	Relative and Absolute Stereochemistry of Secondary/Secondary Diols: Low-Temperature1H NMR of Their bis-MPA Esters§. Journal of Organic Chemistry, 2007, 72, 2297-2301.	3.2	25
72	Thermodynamic Analysis of βâ€Sheet Secondary Structure by Backbone Thioester Exchange. Angewandte Chemie - International Edition, 2007, 46, 7056-7059.	13.8	23

#	Article	IF	CITATIONS
73	Thermodynamic Analysis of βâ€Sheet Secondary Structure by Backbone Thioester Exchange. Angewandte Chemie, 2007, 119, 7186-7189.	2.0	7
74	The1H NMR Method for the Determination of the Absolute Configuration of 1,2,3-prim,sec,sec-Triols‡. Organic Letters, 2006, 8, 4449-4452.	4.6	24
75	The Assignment of the Absolute Configuration of 1,2-Diols by Low-Temperature NMR of a Single MPA Derivative ChemInform, 2006, 37, no.	0.0	0
76	The Prediction of the Absolute Stereochemistry of Primary and Secondary 1,2-Diols by1H NMR Spectroscopy: Principles and Applications. Chemistry - A European Journal, 2005, 11, 5509-5522.	3.3	39
77	On the Importance of Carbohydrate-Aromatic Interactions for the Molecular Recognition of Oligosaccharides by Proteins: NMR Studies of the Structure and Binding Affinity of AcAMP2-like Peptides with Non-Natural Naphthyl and Fluoroaromatic Residues. Chemistry - A European Journal, 2005. 11. 7060-7074.	3.3	110
78	The Assignment of the Absolute Configuration of 1,2-Diols by Low-Temperature NMR of a Single MPA Derivative. Organic Letters, 2005, 7, 4855-4858.	4.6	28
79	Absolute configuration of amino alcohols by 1H-NMR. Chemical Communications, 2005, , 5554.	4.1	19
80	Determining the Absolute Stereochemistry of Secondary/Secondary Diols by1H NMR:Â Basis and Applications. Journal of Organic Chemistry, 2005, 70, 3778-3790.	3.2	154
81	Photostability and Dynamic Helical Behavior in Chiral Poly(phenylacetylene)s with a Preferred Screwâ€ S ense. Angewandte Chemie - International Edition, 0, , .	13.8	8