Eberhard Riedle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3675246/publications.pdf

Version: 2024-02-01

145 papers 6,501 citations

47006 47 h-index 69250 77 g-index

151 all docs

151 docs citations

151 times ranked

4869 citing authors

#	Article	IF	CITATIONS
1	Generation of 10 to 50Âfs pulses tunable through all of the visible and the NIR. Applied Physics B: Lasers and Optics, 2000, 71, 457-465.	2.2	305
2	Femtosecond continuum generation in bulk laser host materials with sub- $\hat{l}^{1}/4$ J pump pulses. Applied Physics B: Lasers and Optics, 2009, 97, 561-574.	2.2	248
3	Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on Asolid ground. Applied Physics B: Lasers and Optics, 2009, 96, 215-231.	2.2	237
4	Microscopic Mechanism of Ultrafast Excited-State Intramolecular Proton Transfer: A 30-fs Study of 2-(2â€⁻-Hydroxyphenyl)benzothiazoleâ€. Journal of Physical Chemistry A, 2003, 107, 10580-10590.	2.5	212
5	Vibrational coherence in ultrafast excited state proton transfer. Chemical Physics Letters, 1996, 263, 622-628.	2.6	209
6	Ultrafast excited-state proton transfer and subsequent coherent skeletal motion of 2-(2′-hydroxyphenyl)benzothiazole. Journal of Chemical Physics, 2000, 112, 10699-10702.	3.0	191
7	Ultrafast internal conversion pathway and mechanism in 2-(2′-hydroxyphenyl)benzothiazole: a case study for excited-state intramolecular proton transfer systems. Physical Chemistry Chemical Physics, 2009, 11, 1406.	2.8	174
8	Rotationally resolved ultraviolet spectrum of the benzene–Ar complex by massâ€selected resonanceâ€enhanced twoâ€photon ionization. Journal of Chemical Physics, 1990, 92, 90-96.	3.0	166
9	Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling. Optics Letters, 2004, 29, 1686.	3.3	156
10	Ultrafast Excited-State Proton Transfer of 2-(2â€~-Hydroxyphenyl)benzothiazole: Theoretical Analysis of the Skeletal Deformations and the Active Vibrational Modesâ€. Journal of Physical Chemistry A, 2003, 10591-10599.	2.5	154
11	Scaling up the energy of THz pulses created by optical rectification. Optics Express, 2005, 13, 5762.	3.4	153
12	Role of Structural Order and Excess Energy on Ultrafast Free Charge Generation in Hybrid Polythiophene/Si Photovoltaics Probed in Real Time by Near-Infrared Broadband Transient Absorption. Journal of the American Chemical Society, 2011, 133, 18220-18233.	13.7	130
13	Homogeneous linewidths of single rotational lines in the â€~â€~channel three'' region of C6H6. Journal of Chemical Physics, 1984, 80, 4686-4693.	3.0	113
14	Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1479.	2.1	109
15	DABCO and DMAP—Why Are They Different in Organocatalysis?. Angewandte Chemie - International Edition, 2007, 46, 6176-6179.	13.8	108
16	Förster Resonant Energy Transfer in Orthogonally Arranged Chromophores. Journal of the American Chemical Society, 2010, 132, 16777-16782.	13.7	105
17	Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds. Physical Chemistry Chemical Physics, 2011, 13, 8869.	2.8	104
18	Electronic spectra of polyatomic molecules with resolved individual rotational transitions: Benzene. Journal of Chemical Physics, 1981, 75, 4231-4240.	3.0	99

#	Article	IF	Citations
19	Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses. Optics Letters, 2004, 29, 210.	3.3	98
20	Stabilization and precise calibration of a continuousâ€wave difference frequency spectrometer by use of a simple transfer cavity. Review of Scientific Instruments, 1994, 65, 42-48.	1.3	94
21	Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management. Applied Physics B: Lasers and Optics, 2004, 79, 1027-1032.	2.2	94
22	The interplay of skeletal deformations and ultrafast excited-state intramolecular proton transfer: Experimental and theoretical investigation of 10-hydroxybenzo[h]quinoline. Chemical Physics, 2008, 347, 446-461.	1.9	91
23	Van der Waals bond lengths and electronic spectral shifts of the benzeneî—,Kr and benzeneî—,Xe complexes. Chemical Physics Letters, 1991, 183, 77-83.	2.6	89
24	Lifetimes of single rotational states in the â€~â€~channel three'' region of C6H6. Journal of Chemical Physics, 1986, 84, 6182-6189.	3.0	84
25	Rotationally resolved spectra of the 610 and 610110 band of benzene in a moderately cold molecular beam: Spectral and dynamical analysis. Journal of Chemical Physics, 1989, 91, 4555-4563.	3.0	75
26	Tunable pulses from below 300 to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system. Optics Letters, 2008, 33, 192.	3.3	75
27	Complete Mechanism of Hemithioindigo Motor Rotation. Journal of the American Chemical Society, 2018, 140, 5311-5318.	13.7	75
28	Laboratory apparatus for the accurate, facile and rapid determination of visible light photoreaction quantum yields. Photochemical and Photobiological Sciences, 2010, 9, 1400-1406.	2.9	74
29	Intramolecular [2+2] Photocycloaddition of 3―and 4â€(Butâ€3â€enyl)oxyquinolones: Influence of the Alkene Substitution Pattern, Photophysical Studies, and Enantioselective Catalysis by a Chiral Sensitizer. Chemistry - A European Journal, 2013, 19, 7461-7472.	3.3	67
30	High-resolution UV spectrum of the benzene—N2 van der Waals complex. Chemical Physics Letters, 1990, 175, 79-83.	2.6	66
31	Direct observation of the nuclear motion during ultrafast intramolecular proton transfer. Journal of Molecular Structure, 2004, 700, 13-18.	3.6	66
32	Widely tunable sub-30 fs ultraviolet pulses by chirped sum frequency mixing. Optics Express, 2003, 11, 3110.	3.4	64
33	Femtosecond studies of vibrationally hot molecules produced by intramolecular proton transfer in the excited state. Chemical Physics Letters, 1995, 240, 35-41.	2.6	62
34	Approaching the full octave: noncollinear optical parametric chirped pulse amplification with two-color pumping. Optics Express, 2010, 18, 18752.	3.4	60
35	Photolytic Generation of Benzhydryl Cations and Radicals from Quaternary Phosphonium Salts: How Highly Reactive Carbocations Survive Their First Nanoseconds. Journal of the American Chemical Society, 2012, 134, 11481-11494.	13.7	60
36	Visible-Light-Driven "Onâ€∮"Off―Photochromism of a Polyoxometalate Diarylethene Coordination Complex. Journal of the American Chemical Society, 2018, 140, 10482-10487.	13.7	60

#	Article	IF	CITATIONS
37	The origin of ultrafast proton transfer: Multidimensional wave packet motion vs. tunneling. Chemical Physics Letters, 2011, 503, 61-65.	2.6	58
38	Sub-20 fs visible pulses with 750 nJ energy from a 100 kHz noncollinear optical parametric amplifier. Optics Letters, 2006, 31, 1289.	3.3	56
39	Unambiguous assignment of the van der Waals modes of benzene–Ar by analysis of the rotationally resolved UVâ€spectra and comparison with multidimensional calculations. Journal of Chemical Physics, 1996, 104, 882-898.	3.0	53
40	Ultrafast Bidirectional Dihydroazulene/Vinylheptafulvene (DHA/VHF) Molecular Switches:Â Photochemical Ring Closure of Vinylheptafulvene Proven by a Two-Pulse Experiment. Journal of the American Chemical Society, 2002, 124, 2438-2439.	13.7	52
41	Rotationally resolved vibronic spectra of the van der Waals modes of benzene–Ar and benzene–Kr complexes. Journal of Chemical Physics, 1996, 104, 865-881.	3.0	49
42	Octave wide tunable UV-pumped NOPA: pulses down to 20 fs at 0.5 MHz repetition rate. Optics Express, 2008, 16, 5746.	3.4	49
43	Electronic Double-Quantum Coherences and Their Impact on Ultrafast Spectroscopy: The Example of \hat{l}^2 -Carotene. Journal of Physical Chemistry Letters, 2010, 1, 3366-3370.	4.6	49
44	Ultrafast photo-induced charge transfer unveiled by two-dimensional electronic spectroscopy. Journal of Chemical Physics, 2012, 136, 204503.	3.0	49
45	10 W CEP-stable few-cycle source at 2 Âμm with 100 kHz repetition rate. Optics Express, 2018, 26, 16074.	3.4	49
46	Brewster-angled chirped mirrors for broadband pulse compression without dispersion oscillations. Optics Letters, 2006, 31, 2220.	3.3	48
47	Symmetry-dependent solvation of donor-substituted triarylboranes. Physical Chemistry Chemical Physics, 2008, 10, 6245.	2.8	48
48	Ambident Reactivity of the Nitrite Ion Revisited. Angewandte Chemie - International Edition, 2005, 44, 4623-4626.	13.8	46
49	Carrier-envelope phase stable sub-two-cycle pulses tunable around 18µm at 100ÂkHz. Optics Letters, 2012, 37, 1673.	3.3	46
50	Electronic transient spectroscopy from the deep UV to the NIR: unambiguous disentanglement of complex processes. Faraday Discussions, 2013, 163, 139.	3.2	45
51	Octave-spanning single-cycle middle-infrared generation through optical parametric amplification in LiGaS ₂ . Optics Express, 2019, 27, 21306.	3.4	44
52	Photochemistry of 2-(2â€~-Hydroxyphenyl)benzothiazole Encapsulated in Nanosized Zeolites. Journal of Physical Chemistry A, 2004, 108, 10640-10648.	2.5	43
53	Mid-IR femtosecond pulse generation on the microjoule level up to 5 μm at high repetition rates. Optics Letters, 2011, 36, 4212.	3.3	43
54	Design and calibration of zero-additional-phase SPIDER. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1875.	2.1	41

#	Article	IF	CITATIONS
55	Heterogeneous perturbations in the Doppler-free S1 ↕S0 two-photon spectrum of benzene: Evidence for intrastate coupling. Chemical Physics Letters, 1984, 110, 452-458.	2.6	40
56	Phase-locked multi-terahertz electric fields exceeding 13  MV/cm at a 190  kHz repetition rate. Letters, 2017, 42, 4367.	Ogtjcs	40
57	Vibronic excitations of large molecules in solution studied by twoâ€color pump–probe experiments on the 20 fs time scale. Journal of Chemical Physics, 1996, 104, 5761-5769.	3.0	39
58	Intensity distribution in rotational line spectra. I. Experimental results for Dopplerâ€freeS1â†60transitions in benzene. Journal of Chemical Physics, 1988, 89, 4620-4632.	3.0	36
59	Real-time characterization and optimal phase control of tunable visible pulses with a flexible compressor. Applied Physics B: Lasers and Optics, 2002, 74, s219-s224.	2.2	35
60	Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses. Review of Scientific Instruments, 2004, 75, 2323-2327.	1.3	35
61	Generation of 16-fs pulses at 425 nm by extracavity frequency doubling of a mode-locked Ti:sapphire laser. Optics Letters, 1995, 20, 2120.	3.3	34
62	High resolution vibrational overtone studies of HOD and H2O with single mode, injection seeded ring optical parametric oscillators. Journal of Chemical Physics, 1997, 107, 8854-8865.	3.0	34
63	Vibronic energy relaxation approach highlighting deactivation pathways in carotenoids. Physical Chemistry Chemical Physics, 2015, 17, 19491-19499.	2.8	34
64	Highly localized vibronic wavepackets in large reactive molecules. Applied Physics B: Lasers and Optics, 2000, 71, 405-409.	2.2	33
65	Femtosecond charge transfer dynamics in artificial donor/acceptor systems: switching from adiabatic to nonadiabatic regimes by small structural changes. Chemical Physics Letters, 2001, 345, 81-88.	2.6	33
66	Sub-20 fs pulses shaped directly in the UV by an acousto-optic programmable dispersive filter. Optics Express, 2010, 18, 6164.	3.4	32
67	19 fs shaped ultraviolet pulses. Optics Letters, 2006, 31, 543.	3.3	31
68	Pulsed Doppler-free two-photon spectroscopy of polyatomic molecules. Optics Communications, 1982, 43, 388-394.	2.1	30
69	Femtosecond two-photon photoemission at 150 kHz utilizing two noncollinear optical parametric amplifiers for measuring ultrafast electron dynamics. Applied Physics B: Lasers and Optics, 2005, 80, 727-731.	2.2	30
70	Toward generation of \hat{l} range sub-ps THz pulses by optical rectification. Applied Physics B: Lasers and Optics, 2007, 86, 419-423.	2.2	30
71	Reaction path dependent coherent wavepacket dynamics in excited state intramolecular double proton transfer. Chemical Physics, 2008, 349, 197-203.	1.9	30
72	Convenient pulse length measurement of sub-20-fs pulses down to the deep UV via two-photon absorption in bulk material. Applied Physics B: Lasers and Optics, 2011, 104, 783-791.	2.2	30

#	Article	IF	CITATIONS
73	Sub-20  fs μJ-energy pulses tunable down to the near-UV from a 1  MHz Yb-fiber laser system. 2014, 39, 2588.	Optics Let	iters,
74	Switching dynamics of the photochromic 1,1-dicyano-2-(4-cyanophenyl)-1,8a-dihydroazulene probed by sub-30 fs spectroscopy. Chemical Physics Letters, 2004, 390, 328-334.	2.6	29
75	Sub-doppler spectroscopy of benzene in the †channel-three' region. Faraday Discussions of the Chemical Society, 1983, 75, 387-394.	2.2	28
76	Pulse Compression of Ultrashort UV Pulses by Self-Phase Modulation in Bulk Material. Applied Sciences (Switzerland), 2013, 3, 153-167.	2.5	28
77	Buildup and Decay of the Optical Absorption in the Ultrafast Photo-Generation and Reaction of Benzhydryl Cations in Solution. Journal of Physical Chemistry A, 2012, 116, 11064-11074.	2.5	27
78	Vibrational and vibronic dynamics of large molecules in solution studied on a 20 fs timescale. Chemical Physics Letters, 1995, 244, 164-170.	2.6	26
79	50-fs Photoinduced Intramolecular Charge Separation in Triphenylmethane Lactones. Journal of Physical Chemistry A, 2004, 108, 10763-10769.	2.5	25
80	High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy. Applied Physics B: Lasers and Optics, 2005, 81, 875-879.	2.2	25
81	The Key Role of Solvation Dynamics in Intramolecular Electron Transfer: Time-Resolved Photophysics of Crystal Violet Lactone. Journal of Physical Chemistry A, 2008, 112, 8487-8496.	2.5	24
82	Direct measurement of the effective input noise power of an optical parametric amplifier. Laser and Photonics Reviews, 2013, 7, 580-588.	8.7	24
83	Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate. Review of Scientific Instruments, 2019, 90, 113103.	1.3	23
84	A Comprehensive Microscopic Picture of the Benzhydryl Radical and Cation Photogeneration and Interconversion through Electron Transfer. ChemPhysChem, 2013, 14, 1423-1437.	2.1	22
85	Ambident Reactivity of the Cyanate Anion. Chemistry - A European Journal, 2008, 14, 3866-3868.	3.3	21
86	Efficiency Enhancement in Hybrid P3HT/Silicon Nanocrystal Solar Cells. Green, 2011, 1, .	0.4	21
87	Sub-Doppler supersonic jet spectra of the coupled 6a10and 6b10vibronic bands of the S1(1B2u) ↕S0(1A1g) transition in monodeuterobenzene and their rovibrational analysis. Molecular Physics, 1994, 81, 1-15.	1.7	19
88	Mixing of the vibrational angular momentum components of multiply degenerate vibronic states of benzene by vibrational l-type resonance. Chemical Physics, 1991, 152, 375-389.	1.9	18
89	Variation of the Ultrafast Fluorescence Quenching in 2,6-Sulfanyl-Core-Substituted Naphthalenediimides by Electron Transfer. Journal of Physical Chemistry A, 2010, 114, 12555-12560.	2,5	16
90	Phase-locked ultrashort pulse trains at separate and independently tunable wavelengths. Optics Letters, 2005, 30, 2028.	3.3	15

#	Article	IF	Citations
91	Influence of core-substitution on the ultrafast charge separation and recombination in arylamino core-substituted naphthalene diimides. Chemical Physics Letters, 2011, 504, 24-28.	2.6	15
92	A novel setup for femtosecond pump-repump-probe IR spectroscopy with few cycle CEP stable pulses. Optics Express, 2013, 21, 20145.	3.4	15
93	Crosscorrelation measurements of ultrashort visible pulses: comparison between nonlinear crystals and SiC photodiodes. Optics Communications, 2000, 184, 321-328.	2.1	14
94	Generation of 30Âfs pulses tunable from 189 to 240Ânm with an all-solid-state setup. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2765.	2.1	14
95	Ultrafast Dynamics of <i>meso</i> i>â€Tetraphenylmetalloporphyrins: The Role of Dark States. ChemPlusChem, 2013, 78, 1244-1251.	2.8	13
96	Tuning the Ground and Excited State Dynamics of Hemithioindigo Molecular Motors by Changing Substituents. Chemistry - A European Journal, 2020, 26, 13507-13512.	3.3	13
97	Dynamic Behavior of Individual Rovibronic States in S ₁ Benzene. Israel Journal of Chemistry, 1990, 30, 197-205.	2.3	12
98	Broadband difference frequency mixing between visible and near-infrared pulses for few-cycle pulse generation with stable carrier-envelope phase. Applied Physics B: Lasers and Optics, 2013, 113, 19-25.	2.2	12
99	The central role of the metal ion for photoactivity: Zn– vs. Ni–Mabiq. Chemical Science, 2021, 12, 7521-7532.	7.4	11
100	Excited-state dynamics of a molecular dyad with two orthogonally-oriented fluorophores. Physical Chemistry Chemical Physics, 2018, 20, 30219-30230.	2.8	10
101	The Dependence of Chemical Quantum Yields of Visible Light Photoredox Catalysis on the Irradiation Power. ChemPhotoChem, 2021, 5, 1009-1019.	3.0	10
102	Seeding of picosecond and femtosecond optical parametric amplifiers by weak single mode continuous lasers. Optics Express, 2013, 21, 730.	3.4	9
103	Hole-transfer induced energy transfer in perylene diimide dyads with a donor–spacer–acceptor motif. Physical Chemistry Chemical Physics, 2015, 17, 25061-25072.	2.8	9
104	Ultrafast photochemistry with two product channels: Wavepacket motion through two distinct conical intersections. Chemical Physics Letters, 2017, 683, 128-134.	2.6	9
105	Encapsulation of diphenylmethyl phosphonium salts in reverse micelles: Enhanced bimolecular reaction of the photofragments. Chemical Physics Letters, 2011, 512, 60-65.	2.6	8
106	All-reflective UV-VIS-NIR transmission and fluorescence spectrometer for \hat{l} /4m-sized samples. AlP Advances, 2014, 4, 077134.	1.3	7
107	Photogeneration and reactions of benzhydryl cations and radicals: A complex sequence of mechanisms from femtoseconds to microseconds. Pure and Applied Chemistry, 2013, 85, 1487-1498.	1.9	5
108	Highly Selective Relaxation of the OH Stretching Overtones in Isolated HDO Molecules Observed by Infrared Pump–Repump–Probe Spectroscopy. Journal of Physical Chemistry A, 2015, 119, 6831-6836.	2.5	5

#	Article	IF	Citations
109	Sub-doppler two-photon spectrum of asymmetric rotor molecules: analysis of the qqQ rotational branch of the S1(1B2u)141 ↕S0(1A1g) system of benzene-d1. Chemical Physics Letters, 1986, 126, 558-566.	2.6	4
110	16 Time resolved spectroscopy in photocatalysis. , 2013, , 319-378.		4
111	Quantitative Inâ€Situ NMR Illumination for Excitation and Kinetic Analysis of Molecular Motor Intermediates. ChemPhotoChem, 0, , .	3.0	4
112	A broad and tunable 250- to 430-nm source for microscopy and lifetime measurements by frequency doubling of a 78-MHz-picosecond white-light laser. Applied Physics B: Lasers and Optics, 2014, 116, 875-882.	2.2	3
113	Dynamics of the OH stretching mode in crystalline Ba(ClO4)2·3H2O. Journal of Chemical Physics, 2018, 148, 054307.	3.0	3
114	Icelike Vibrational Properties of Strong Hydrogen Bonds in Hydrated Lithium Nitrate. Journal of Physical Chemistry A, 2020, 124, 5784-5789.	2.5	2
115	Continuum generation in laser host materials with pump pulse durations covering the entire femtosecond regime., 2011,,.		2
116	Continuum generation in laser host materials towards table-top OPCPA. , 2010, , .		2
117	Two-photon absorption as convenient method for 20 fs pulse length measurement in the deep UV. , 2011, , .		1
118	Supercontinuum generation in laser host materials with pulse durations over the entire femtosecond regime. , $2011, \ldots$		1
119	Time-resolved photoemission electron microscopy of a plasmonic slit resonator using 1 MHz, 25 fs, UV-to-NIR-tunable pulses. EPJ Web of Conferences, 2019, 205, 08002.	0.3	1
120	Direct Generation of 7Âfs Whitelight Pulses from Bulk Sapphire. Springer Proceedings in Physics, 2015, , 725-728.	0.2	1
121	Quantitative <i>Inâ€Situ</i> NMR Illumination for Excitation and Kinetic Analysis of Molecular Motor Intermediates. ChemPhotoChem, 2022, 6, .	3.0	1
122	Gated heterodyne coherent anti-Stokes Raman scattering for high-contrast vibrational imaging. , 2005, 5856, 41.		0
123	Brewster-angle chirped mirrors for broadband pulse compression without dispersion oscillations. , 2006, , .		0
124	Tunable pulses from below 300 to 950 nm with durations down to $12\mathrm{fs}$ from a 2 MHz Yb-doped fiber system. , 2007, , .		0
125	Sub-100 fs Electron and Proton Transfer: the Role of the Environment. , 2007, , .		0
126	Noncollinear optical parametric amplification of cw light, continua and vacuum fluctuations. , 2007, , .		0

#	Article	IF	CITATIONS
127	Investigation and optimization of continuum generation in crystals - white-light beyond sapphire. , 2009, , .		O
128	The First Picoseconds in the Life of Benzhydryl Cations: Ultrafast Generation and Chemical Reactions. , 2010, , .		0
129	Ultrafast time-resolved photoelectron spectroscopy with tunable deep UV-pulses. , 2011, , .		0
130	Förster resonant energy transfer (FRET) in orthogonal chromophores. , 2011, , .		0
131	Coherent internal conversion of pyrene revealed by pump-probe and ultrabroad 2D-UV spectroscopy., 2013,,.		0
132	Pushing the NOPA to New Frontiers: Output to below 400 nm, MHz Operation and ps Pump Duration. , 2014, , .		0
133	Relaxation dynamics of the OH stretching overtones in isolated HDO molecules observed by IR pump-repump-probe spectroscopy. , 2015, , .		0
134	Dramatic beam steering by kerr lensing in optical parametric amplifiers. , 2017, , .		0
135	Limitation of the SHG and THG efficiency and beam break-up for femtosecond pulses by Kerr lensing. , 2017, , .		0
136	Exciton-Exciton Annihilation as a Mechanism for Uphill Transfer in a Molecular Excitonic System. EPJ Web of Conferences, 2019, 205, 06017.	0.3	0
137	18. Time resolved spectroscopy in photocatalysis. , 2020, , 443-502.		0
138	Intramolecular electron transfer beyond solvent control. , 2006, , 415-419.		0
139	Chirped mirrors without dispersion oscillations by Brewster's angle incidence. Springer Series in Chemical Physics, 2007, , 163-165.	0.2	0
140	THz Radiation from Light-induced Electron and Proton Motion in Bacteriorhodopsin. Springer Series in Chemical Physics, 2007, , 465-467.	0.2	0
141	Search for Pure Vibrational Dephasing of Electronically Excited Dye Molecules in Solution., 2007,,.		0
142	Octave-wide tunable NOPA pulses at up to 2 MHz repetition rate. Springer Series in Chemical Physics, 2009, , 801-803.	0.2	0
143	Pushing the NOPA to New Frontiers: Output to Below 400Ânm, MHz Operation and ps Pump Duration. Springer Proceedings in Physics, 2015, , 757-760.	0.2	0
144	On the Edge: Characterizing Broadband Dielectric Mirrors from UV to NIR Using a Pump-Probe Technique. , 2016, , .		0

ARTICLE IF CITATIONS

145 Pyrene Dynamics: Covalently Linked Dimers Accelerate the Kinetics from ns to ps and Produce Excimers., 2016,,... o