Zhenfa Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3675190/publications.pdf

Version: 2024-02-01

			361413	414414
32		1,489	20	32
papers		citations	h-index	g-index
22		22	22	2022
32		32	32	2032
all docs	3	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Per- and polyfluoroalkyl substances (PFASs) in airborne particulate matter (PM2.0) emitted during floor waxing: A pilot study. Atmospheric Environment, 2022, 268, 118845.	4.1	8
2	Morphology and Viscosity Changes after Reactive Uptake of Isoprene Epoxydiols in Submicrometer Phase Separated Particles with Secondary Organic Aerosol Formed from Different Volatile Organic Compounds. ACS Earth and Space Chemistry, 2022, 6, 871-882.	2.7	11
3	Live cell imaging of oxidative stress in human airway epithelial cells exposed to isoprene hydroxyhydroperoxide. Redox Biology, 2022, 51, 102281.	9.0	6
4	Toward Elucidating the Human Gut Microbiota–Brain Axis: Molecules, Biochemistry, and Implications for Health and Diseases. Biochemistry, 2022, 61, 2806-2821.	2.5	6
5	Initial pH Governs Secondary Organic Aerosol Phase State and Morphology after Uptake of Isoprene Epoxydiols (IEPOX). Environmental Science & Epoxydiols (IEPOX).	10.0	9
6	Organosulfates from Dark Aqueous Reactions of Isoprene-Derived Epoxydiols Under Cloud and Fog Conditions: Kinetics, Mechanism, and Effect of Reaction Environment on Regioselectivity of Sulfate Addition. ACS Earth and Space Chemistry, 2021, 5, 474-486.	2.7	5
7	An unexpected butadiene diolepoxide-mediated genotoxicity implies alternative mechanism for 1,3-butadiene carcinogenicity. Chemosphere, 2021, 266, 129149.	8.2	5
8	Seasonal Contribution of Isoprene-Derived Organosulfates to Total Water-Soluble Fine Particulate Organic Sulfur in the United States. ACS Earth and Space Chemistry, 2021, 5, 2419-2432.	2.7	16
9	Isoprene-Derived Secondary Organic Aerosol Induces the Expression of MicroRNAs Associated with Inflammatory/Oxidative Stress Response in Lung Cells. Chemical Research in Toxicology, 2020, 33, 381-387.	3.3	22
10	Heterogeneous Hydroxyl Radical Oxidation of Isoprene-Epoxydiol-Derived Methyltetrol Sulfates: Plausible Formation Mechanisms of Previously Unexplained Organosulfates in Ambient Fine Aerosols. Environmental Science and Technology Letters, 2020, 7, 460-468.	8.7	43
11	Gut Microbiome Toxicity: Connecting the Environment and Gut Microbiome-Associated Diseases. Toxics, 2020, 8, 19.	3.7	66
12	Joint Impacts of Acidity and Viscosity on the Formation of Secondary Organic Aerosol from Isoprene Epoxydiols (IEPOX) in Phase Separated Particles. ACS Earth and Space Chemistry, 2019, 3, 2646-2658.	2.7	80
13	The Cooling Rate- and Volatility-Dependent Glass-Forming Properties of Organic Aerosols Measured by Broadband Dielectric Spectroscopy. Environmental Science & Environmental Science & 2019, 53, 12366-12378.	10.0	37
14	Reactive Uptake of Isoprene Epoxydiols Increases the Viscosity of the Core of Phase-Separated Aerosol Particles. ACS Earth and Space Chemistry, 2019, 3, 1402-1414.	2.7	35
15	Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol Ratio Results in Extensive Conversion of Inorganic Sulfate to Organosulfur Forms: Implications for Aerosol Physicochemical Properties. Environmental Science & Envi	10.0	111
16	Chemical Characterization of Isoprene- and Monoterpene-Derived Secondary Organic Aerosol Tracers in Remote Marine Aerosols over a Quarter Century. ACS Earth and Space Chemistry, 2019, 3, 935-946.	2.7	27
17	Effect of the Aerosol-Phase State on Secondary Organic Aerosol Formation from the Reactive Uptake of Isoprene-Derived Epoxydiols (IEPOX). Environmental Science and Technology Letters, 2018, 5, 167-174.	8.7	131
18	Isoprene-Derived Organosulfates: Vibrational Mode Analysis by Raman Spectroscopy, Acidity-Dependent Spectral Modes, and Observation in Individual Atmospheric Particles. Journal of Physical Chemistry A, 2018, 122, 303-315.	2.5	66

#	Article	IF	CITATIONS
19	Trisaminohexyl isocyanurate, a urinary biomarker of HDI isocyanurate exposure. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1076, 117-129.	2.3	11
20	Highly Oxygenated Multifunctional Compounds in \hat{l} ±-Pinene Secondary Organic Aerosol. Environmental Science & Environmenta	10.0	93
21	Nontarget Analysis Reveals a Bacterial Metabolite of Pyrene Implicated in the Genotoxicity of Contaminated Soil after Bioremediation. Environmental Science & Environmental Sc	10.0	34
22	pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Scientific Reports, 2017, 7, 40093.	3.3	144
23	Evidence that endogenous formaldehyde produces immunogenic and atherogenic adduct epitopes. Scientific Reports, 2017, 7, 10787.	3.3	23
24	Effect of Organic Coatings, Humidity and Aerosol Acidity on Multiphase Chemistry of Isoprene Epoxydiols. Environmental Science & Epoxydiols. Environmental Science & Epoxydiols. Environmental Science & Epoxydiols.	10.0	68
25	Chemical Characterization of Secondary Organic Aerosol from Oxidation of Isoprene Hydroxyhydroperoxides. Environmental Science & Environmental	10.0	105
26	Assessing the impact of anthropogenic pollution on isoprene-derived secondary organic aerosol formation in PM _{2.5} collected from the Birmingham, Alabama, ground site during the 2013 Southern OxidantÂand Aerosol Study. Atmospheric Chemistry and Physics, 2016, 16, 4897-4914.	4.9	105
27	Isoprene-Derived Secondary Organic Aerosol Induces the Expression of Oxidative Stress Response Genes in Human Lung Cells. Environmental Science and Technology Letters, 2016, 3, 250-254.	8.7	60
28	Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress. Chemical Research in Toxicology, 2015, 28, 2411-2418.	3.3	19
29	Identification of Anthraquinone-Degrading Bacteria in Soil Contaminated with Polycyclic Aromatic Hydrocarbons. Applied and Environmental Microbiology, 2015, 81, 3775-3781.	3.1	68
30	Ethenoguanines Undergo Glycosylation by Nucleoside 2′-Deoxyribosyltransferases at Non-Natural Sites. PLoS ONE, 2014, 9, e115082.	2.5	12
31	Secondary Organic Aerosol Formation via 2-Methyl-3-buten-2-ol Photooxidation: Evidence of Acid-Catalyzed Reactive Uptake of Epoxides. Environmental Science and Technology Letters, 2014, 1, 242-247.	8.7	42
32	Synthesis of uniformly 13C-labeled polycyclic aromatic hydrocarbons. Organic and Biomolecular Chemistry, 2011, 9, 5431.	2.8	21