Nicolas Kieffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3675020/publications.pdf

Version: 2024-02-01

43 papers 2,245 citations

304743

22

h-index

265206 42 g-index

44 all docs

44 docs citations

times ranked

44

2779 citing authors

#	Article	IF	CITATIONS
1	Large-scale characterization of the macrolide resistome reveals high diversity and several new pathogen-associated genes. Microbial Genomics, 2022, 8, .	2.0	5
2	Evidence for Pseudoxanthomonas mexicana as the recent origin of the blaAlM-1 carbapenemase gene. International Journal of Antimicrobial Agents, 2022, 59, 106571.	2.5	4
3	MCR-like protein from Kosakonia sacchari, an environmental Enterobacterales. Journal of Global Antimicrobial Resistance, 2021, 25, 339-340.	2.2	O
4	Eradication of a Multidrug-Resistant, Carbapenemase-Producing Klebsiella pneumoniae Isolate Following Oral and Intra-rectal Therapy With a Custom Made, Lytic Bacteriophage Preparation. Clinical Infectious Diseases, 2020, 70, 1998-2001.	5.8	84
5	In-vitro evaluation of a dual carbapenem combination against carbapenemase-producing Acinetobacter baumannii. Journal of Infection, 2020, 80, 121-142.	3.3	22
6	The Class A Carbapenemases BKC-1 and GPC-1 Both Originate from the Bacterial Genus Shinella. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	7
7	Characterization of FosL1, a Plasmid-Encoded Fosfomycin Resistance Protein Identified in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	18
8	IS <i>Ecp1</i> -Mediated Transposition Leads to Fosfomycin and Broad-Spectrum Cephalosporin Resistance in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	8
9	Characterization of PAN-1, a Carbapenem-Hydrolyzing Class B \hat{l}^2 -Lactamase From the Environmental Gram-Negative Pseudobacteriovorax antillogorgiicola. Frontiers in Microbiology, 2019, 10, 1673.	3.5	5
10	Identification of FosA8, a Plasmid-Encoded Fosfomycin Resistance Determinant from Escherichia coli, and Its Origin in Leclercia adecarboxylata. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	26
11	Increased Resistance to Carbapenems in <i>Proteus mirabilis</i> Mediated by Amplification of the <i>bla</i> _{VIM-1} -Carrying and IS <i>26</i> -Associated Class 1 Integron. Microbial Drug Resistance, 2019, 25, 663-667.	2.0	18
12	$\mbox{\sc i}\mbox{\sc mcr-9}\mbox{\sc /i}\mbox{\sc },$ an Inducible Gene Encoding an Acquired Phosphoethanolamine Transferase in Escherichia coli, and Its Origin. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	131
13	Rapid immunochromatography-based detection of carbapenemase producers. Infection, 2019, 47, 673-675.	4.7	13
14	Functional Characterization of a Miniature Inverted Transposable Element at the Origin of mcr-5 Gene Acquisition in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	13
15	Colistin resistance in Parisian inpatient faecal Escherichia coli as the result of two distinct evolutionary pathways. Journal of Antimicrobial Chemotherapy, 2019, 74, 1521-1530.	3.0	65
16	ZHO-1, an intrinsic MBL from the environmental Gram-negative species Zhongshania aliphaticivorans. Journal of Antimicrobial Chemotherapy, 2019, 74, 1568-1571.	3.0	5
17	Acquisition of Extended-Spectrum \hat{l}^2 -Lactamase GES-6 Leading to Resistance to Ceftolozane-Tazobactam Combination in <i>Pseudomonas aeruginosa</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	21
18	Colistin-resistant carbapenemase-producing isolates among Klebsiella spp. and Acinetobacter baumannii in Tripoli, Libya. Journal of Global Antimicrobial Resistance, 2018, 13, 37-39.	2.2	13

#	Article	IF	Citations
19	Transposition of Tn <i>1213</i> Encoding the PER-1 Extended-Spectrum \hat{l}^2 -Lactamase. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	4
20	Genetic and Functional Characterization of an MCR-3-Like Enzyme-Producing Escherichia coli Isolate Recovered from Swine in Brazil. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	34
21	Co-production of MCR-1 and extended-spectrum \hat{I}^2 -lactamase in Escherichia coli recovered from urinary tract infections in Switzerland. Infection, 2018, 46, 143-144.	4.7	4
22	Stability of cefiderocol against clinically significant broad-spectrum oxacillinases. International Journal of Antimicrobial Agents, 2018, 52, 866-867.	2.5	42
23	Evaluation of the Rapid Polymyxin NP test and its industrial version for the detection of polymyxin-resistant Enterobacteriaceae. Diagnostic Microbiology and Infectious Disease, 2018, 92, 90-94.	1.8	24
24	Screening and Characterization of Multidrug-Resistant Gram-Negative Bacteria from a Remote African Area, São Tomé and PrÃncipe. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	25
25	Antimicrobial Resistance in <i>Escherichia coli</i> . Microbiology Spectrum, 2018, 6, .	3.0	406
26	In Vitro Study of IS Apl 1 -Mediated Mobilization of the Colistin Resistance Gene mcr-1. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	79
27	Evaluation of the RAPIDEC® CARBA NP and β-CARBA® tests for rapid detection of Carbapenemase-producing Enterobacteriaceae. Diagnostic Microbiology and Infectious Disease, 2017, 88, 293-297.	1.8	44
28	First report of OXA-181 and NDM-1 from a clinical Klebsiella pneumoniae isolate from Nigeria. International Journal of Infectious Diseases, 2017, 61, 1-2.	3.3	18
29	Moraxella Species as Potential Sources of MCR-Like Polymyxin Resistance Determinants. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	71
30	MCR-2-mediated plasmid-borne polymyxin resistance most likely originates from Moraxella pluranimalium. Journal of Antimicrobial Chemotherapy, 2017, 72, 2947-2949.	3.0	45
31	High Rate of MCR-1–Producing <i>Escherichia coli</i> and <i>Klebsiella pneumoniae</i> among Pigs, Portugal. Emerging Infectious Diseases, 2017, 23, 2023-2029.	4.3	75
32	Plasmid-Mediated Colistin-Resistant <i>Escherichia coli</i> in Bacteremia in Switzerland. Clinical Infectious Diseases, 2016, 62, 1322-1323.	5.8	55
33	Genetic Features of MCR-1-Producing Colistin-Resistant Escherichia coli Isolates in South Africa. Antimicrobial Agents and Chemotherapy, 2016, 60, 4394-4397.	3.2	135
34	High Prevalence of Carbapenemase-Producing Enterobacteriaceae among Hospitalized Children in Luanda, Angola. Antimicrobial Agents and Chemotherapy, 2016, 60, 6189-6192.	3.2	49
35	Sequence Type 48 Escherichia coli Carrying the <i>bla</i> _{CTX-M-1} Incl1/ST3 Plasmid in Drinking Water in France. Antimicrobial Agents and Chemotherapy, 2016, 60, 6430-6432.	3.2	31
36	Very low prevalence of MCR-1/MCR-2 plasmid-mediated colistin resistance in urinary tract Enterobacteriaceae in Switzerland. International Journal of Infectious Diseases, 2016, 51, 4-5.	3.3	59

3

#	Article	IF	CITATIONS
37	Features of the <i>mcr-1</i> Cassette Related to Colistin Resistance. Antimicrobial Agents and Chemotherapy, 2016, 60, 6438-6439.	3.2	21
38	VIM-1, VIM-34, and IMP-8 Carbapenemase-Producing Escherichia coli Strains Recovered from a Portuguese River. Antimicrobial Agents and Chemotherapy, 2016, 60, 2585-2586.	3.2	27
39	Co-occurrence of extended spectrum \hat{l}^2 lactamase and MCR-1 encoding genes on plasmids. Lancet Infectious Diseases, The, 2016, 16, 281-282.	9.1	181
40	Plasmid-mediated carbapenem and colistin resistance in a clinical isolate of Escherichia coli. Lancet Infectious Diseases, The, 2016, 16, 281.	9.1	230
41	<i>In vitro</i> evaluation of dual carbapenem combinations against carbapenemase-producing Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 2016, 71, 156-161.	3.0	67
42	Emergence of colistin resistance in <i>Klebsiella pneumoniae</i> from veterinary medicine. Journal of Antimicrobial Chemotherapy, 2015, 70, 1265-1267.	3.0	23
43	Antimicrobial Resistance in <i>Escherichia coli</i> ., 0, , 289-316.		24