EilÃ-s Dowd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3673353/publications.pdf Version: 2024-02-01

FILÃS DOWD

#	Article	IF	CITATIONS
1	P2X receptor-mediated excitation of nociceptive afferents in the normal and arthritic rat knee joint. British Journal of Pharmacology, 1998, 125, 341-346.	5.4	132
2	Time-course of nigrostriatal neurodegeneration and neuroinflammation in the 6-hydroxydopamine-induced axonal and terminal lesion models of Parkinson's disease in the rat. Neuroscience, 2011, 175, 251-261.	2.3	121
3	Further characterisation of the LPS model of Parkinson's disease: A comparison of intra-nigral and intra-striatal lipopolysaccharide administration on motor function, microgliosis and nigrostriatal neurodegeneration in the rat. Brain, Behavior, and Immunity, 2013, 27, 91-100.	4.1	100
4	Altered mitogen-activated protein kinase signaling, tau hyperphosphorylation and mild spatial learning dysfunction in transgenic rats expressing the β-amyloid peptide intracellularly in hippocampal and cortical neurons. Neuroscience, 2004, 129, 583-592.	2.3	91
5	Differential upregulation of the cannabinoid CB2 receptor in neurotoxic and inflammation-driven rat models of Parkinson's disease. Experimental Neurology, 2015, 269, 133-141.	4.1	87
6	The Corridor Task: A simple test of lateralised response selection sensitive to unilateral dopamine deafferentation and graft-derived dopamine replacement in the striatum. Brain Research Bulletin, 2005, 68, 24-30.	3.0	86
7	Lentivectorâ€mediated delivery of GDNF protects complex motor functions relevant to human Parkinsonism in a rat lesion model. European Journal of Neuroscience, 2005, 22, 2587-2595.	2.6	84
8	Potential of rat bone marrow-derived mesenchymal stem cells as vehicles for delivery of neurotrophins to the Parkinsonian rat brain. Brain Research, 2010, 1359, 33-43.	2.2	75
9	The reduction in immunogenicity of neurotrophin overexpressing stem cells after intra-striatal transplantation by encapsulation inÂanÂinÂsitu gelling collagen hydrogel. Biomaterials, 2013, 34, 9420-9429.	11.4	75
10	Activation of P2X receptors for adenosine triphosphate evokes cardiorespiratory reflexes in anaesthetized rats. Journal of Physiology, 1998, 507, 843-855.	2.9	74
11	GDNF-secreting mesenchymal stem cells provide localized neuroprotection in an inflammation-driven rat model of Parkinson's disease. Neuroscience, 2015, 303, 402-411.	2.3	74
12	Encapsulation of primary dopaminergic neurons in a GDNF-loaded collagen hydrogel increases their survival, re-innervation and function after intra-striatal transplantation. Scientific Reports, 2017, 7, 16033.	3.3	67
13	Recovery of functional deficits following early donor age ventral mesencephalic grafts in a rat model of Parkinson's disease. Neuroscience, 2008, 154, 631-640.	2.3	46
14	Upregulation of the cannabinoid CB2 receptor in environmental and viral inflammation-driven rat models of Parkinson's disease. Experimental Neurology, 2016, 283, 204-212.	4.1	46
15	Comparison of 6-hydroxydopamine-induced medial forebrain bundle and nigrostriatal terminal lesions in a lateralised nose-poking task in rats. Behavioural Brain Research, 2005, 159, 153-161.	2.2	45
16	Gamma Band Light Stimulation in Human Case Studies: Groundwork for Potential Alzheimer's Disease Treatment. Journal of Alzheimer's Disease, 2019, 70, 171-185.	2.6	43
17	Deficits in a lateralized associative learning task in dopamine-depleted rats with functional recovery by dopamine-rich transplants. European Journal of Neuroscience, 2004, 20, 1953-1959.	2.6	42
18	Survival and Immunogenicity of Mesenchymal Stem Cells From the Green Fluorescent Protein Transgenic Rat in the Adult Rat Brain. Neurorehabilitation and Neural Repair, 2010, 24, 645-656.	2.9	42

EilÃs Dowd

#	Article	IF	CITATIONS
19	Loss of cannabinoid CB1 receptor expression in the 6-hydroxydopamine-induced nigrostriatal terminal lesion model of Parkinson's disease in the rat. Brain Research Bulletin, 2010, 81, 543-548.	3.0	42
20	The neurotoxicity of gene vectors and its amelioration by packaging with collagen hollow spheres. Biomaterials, 2013, 34, 2130-2141.	11.4	37
21	Polyhydroxyalkanoate/carbon nanotube nanocomposites: flexible electrically conducting elastomers for neural applications. Nanomedicine, 2016, 11, 2547-2563.	3.3	37
22	A role for viral infections in Parkinson's etiology?. Neuronal Signaling, 2018, 2, NS20170166.	3.2	37
23	The effects of cannabinoid drugs on abnormal involuntary movements in dyskinetic and non-dyskinetic 6-hydroxydopamine lesioned rats. Brain Research, 2010, 1363, 40-48.	2.2	36
24	Development and characterisation of a novel rat model of Parkinson's disease induced by sequential intranigral administration of AAV-α-synuclein and the pesticide, rotenone. Neuroscience, 2012, 203, 170-179.	2.3	36
25	Kinetics of thermally induced heat shock protein 27 and 70 expression by bone marrowâ€derived mesenchymal stem cells. Protein Science, 2012, 21, 904-909.	7.6	34
26	Harnessing stem cells and biomaterials to promote neural repair. British Journal of Pharmacology, 2019, 176, 355-368.	5.4	34
27	Unilateral axonal or terminal injection of 6-hydroxydopamine causes rapid-onset nigrostriatal degeneration and contralateral motor impairments in the rat. Brain Research Bulletin, 2008, 77, 312-319.	3.0	33
28	Heat Shock Protein 70 Reduces αâ€Synucleinâ€Induced Predegenerative Neuronal Dystrophy in the αâ€Synuclein Viral Gene Transfer Rat Model of Parkinson's Disease. CNS Neuroscience and Therapeutics, 2014, 20, 50-58.	3.9	33
29	Characterisation of a novel model of Parkinson's disease by intra-striatal infusion of the pesticide rotenone. Neuroscience, 2011, 181, 234-242.	2.3	32
30	GDNF Gene Delivery via a 2-(Dimethylamino)ethyl Methacrylate Based Cyclized Knot Polymer for Neuronal Cell Applications. ACS Chemical Neuroscience, 2013, 4, 540-546.	3.5	32
31	Fibrin-based microsphere reservoirs for delivery of neurotrophic factors to the brain. Nanomedicine, 2015, 10, 765-783.	3.3	32
32	Encapsulation of young donor age dopaminergic grafts in a <scp>GDNF</scp> â€loaded collagen hydrogel further increases their survival, reinnervation, and functional efficacy after intrastriatal transplantation in hemiâ€Parkinsonian rats. European Journal of Neuroscience, 2019, 49, 487-496.	2.6	30
33	Microglial Phenotypes and Their Relationship to the Cannabinoid System: Therapeutic Implications for Parkinson's Disease. Molecules, 2020, 25, 453.	3.8	30
34	Adenosine A1 receptor-mediated excitation of nociceptive afferents innervating the normal and arthritic rat knee joint. British Journal of Pharmacology, 1998, 125, 1267-1271.	5.4	28
35	Untying a nanoscale knotted polymer structure to linear chains for efficient gene delivery in vitro and to the brain. Nanoscale, 2014, 6, 7526-7533.	5.6	28
36	The behavioural and neuropathological impact of intranigral AAV-1±-synuclein is exacerbated by systemic infusion of the Parkinson's disease-associated pesticide, rotenone, in rats. Behavioural Brain Research, 2013, 243, 6-15.	2.2	26

EilÃs Dowd

#	Article	IF	CITATIONS
37	Inhibition by Anandamide of 6-Hydroxydopamine-Induced Cell Death in PC12 Cells. International Journal of Cell Biology, 2010, 2010, 1-10.	2.5	25
38	Further validation of the corridor task for assessing deficit and recovery in the hemi-Parkinsonian rat: Restoration of bilateral food retrieval by dopamine receptor agonism. Behavioural Brain Research, 2006, 169, 352-355.	2.2	23
39	Movement without dopamine: striatal dopamine is required to maintain but not to perform learned actions. Biochemical Society Transactions, 2007, 35, 428-432.	3.4	22
40	Time-course of striatal Toll-like receptor expression in neurotoxic, environmental and inflammatory rat models of Parkinson's disease. Journal of Neuroimmunology, 2017, 310, 103-106.	2.3	20
41	The potential of biomaterials for central nervous system cellular repair. Neurochemistry International, 2021, 144, 104971.	3.8	20
42	Comparison of 6-hydroxydopamine-induced medial forebrain bundle and nigrostriatal terminal lesions in rats using a lateralised nose-poking task with low stimulus–response compatibility. Behavioural Brain Research, 2005, 165, 181-186.	2.2	19
43	Biomaterial approaches to gene therapies for neurodegenerative disorders of the CNS. Biomaterials Science, 2013, 1, 556.	5.4	19
44	Interaction between subclinical doses of the Parkinson's disease associated gene, α -synuclein , and the pesticide, rotenone, precipitates motor dysfunction and nigrostriatal neurodegeneration in rats. Behavioural Brain Research, 2017, 316, 160-168.	2.2	19
45	Primary tissue for cellular brain repair in Parkinson's disease: Promise, problems and the potential of biomaterials. European Journal of Neuroscience, 2019, 49, 472-486.	2.6	18
46	Preparation of Cytocompatible ITO Neuroelectrodes with Enhanced Electrochemical Characteristics Using a Facile Anodic Oxidation Process. Advanced Functional Materials, 2018, 28, 1605035.	14.9	16
47	Viral mimetic priming enhances α-synuclein-induced degeneration: Implications for Parkinson's disease. Brain, Behavior, and Immunity, 2019, 80, 525-535.	4.1	16
48	Targeting delivery in Parkinson's disease. Drug Discovery Today, 2016, 21, 1313-1320.	6.4	15
49	Brain repair for Parkinson's disease: is the answer in the matrix?. Neural Regeneration Research, 2018, 13, 1187.	3.0	10
50	Nigral grafts in animal models of Parkinson's disease. Is recovery beyond motor function possible?. Progress in Brain Research, 2012, 200, 113-142.	1.4	9
51	Fibrin As a Scaffold for Delivery of GDNF Overexpressing Stem Cells to the Adult Rat Brain. ACS Biomaterials Science and Engineering, 2015, 1, 559-566.	5.2	9
52	Cannabinoids in Parkinson's disease. , 2015, , 35-59.		7
53	Differential pattern of motor impairments in neurotoxic, environmental and inflammation-driven rat models of Parkinson's disease. Behavioural Brain Research, 2016, 296, 451-458.	2.2	7
54	Time-Course of Alterations in the Endocannabinoid System after Viral-Mediated Overexpression of α-Synuclein in the Rat Brain. Molecules, 2022, 27, 507.	3.8	6

EilÃs Dowd

#	Article	IF	CITATIONS
55	Anti-inflammatory cytokine-eluting collagen hydrogel reduces the host immune response to dopaminergic cell transplants in a rat model of Parkinson's disease. Neuronal Signaling, 2021, 5, NS20210028.	3.2	4
56	Growth Factor Therapy for Parkinson's Disease: Alternative Delivery Systems. Journal of Parkinson's Disease, 2021, 11, S229-S236.	2.8	4
57	Human Amniocytes Regulate Serotonin Levels by Active Uptake and Express Genes Suggestive of a Wider Role in Facilitating Neurotransmitter Regulation in the Fetal Environment. Stem Cells and Development, 2011, 20, 341-349.	2.1	3
58	Back to the future: lessons from past viral infections and the link with Parkinson's disease. Neuronal Signaling, 2021, 5, NS20200051.	3.2	3
59	Central CB ₂ receptors in inflammation-driven neurodegeneration: dysregulation and therapeutic potential. Neural Regeneration Research, 2016, 11, 1409.	3.0	3
60	The Small Molecule Alpha-Synuclein Aggregator, FN075, Enhances Alpha-Synuclein Pathology in Subclinical AAV Rat Models. Biomolecules, 2021, 11, 1685.	4.0	3
61	In memory of Tom Isaacs: The epitomical mover and shaker. European Journal of Neuroscience, 2019, 49, 303-303.	2.6	1
62	Harnessing stem cells and biomaterials to promote neural repair. British Journal of Pharmacology, 2019, 176, 355-368	5.4	1

2019, 176, 355-368. 6