List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3673283/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of crystalline benzotrithiophene-based two-dimensional graphdiyne analogue. 2D Materials, 2022, 9, 014001.	4.4	6
2	Construction of tetraphenylethylene-based fluorescent hydrogen-bonded organic frameworks for detection of explosives. Dyes and Pigments, 2022, 197, 109881.	3.7	11
3	<scp>Oneâ€Pot</scp> Synthesis of <scp>Fullyâ€Conjugated</scp> Chemically Stable <scp>Twoâ€Dimensional</scp> Covalent Organic Framework. Chinese Journal of Chemistry, 2022, 40, 699-704.	4.9	14
4	Template-Free Synthesis of an Interlocked Covalent Organic Molecular Cage. Journal of Organic Chemistry, 2022, 87, 2767-2772.	3.2	7
5	Ultrasensitive Photodetectors Based on Strongly Interacted Layered-Perovskite Nanowires. ACS Applied Materials & Interfaces, 2022, 14, 1601-1608.	8.0	8
6	Facile construction of fully sp2-carbon conjugated two-dimensional covalent organic frameworks containing benzobisthiazole units. Nature Communications, 2022, 13, 100.	12.8	107
7	Multifunctional Organic Singleâ€Crystalline Microwire Arrays toward Optical Applications. Advanced Functional Materials, 2022, 32, .	14.9	9
8	Regulating lithium deposition behavior by electrokinetic effects in a high-zeta-potential h-BN/zinc-lithium alloy for high-performance lithium metal anodes. Journal of Materials Chemistry A, 2022, 10, 5221-5229.	10.3	6
9	Configurational Selectivity Study of Two-dimensional Covalent Organic Frameworks Isomers Containing D2h and C2 Building Blocks. Chemical Research in Chinese Universities, 2022, 38, 639-642.	2.6	3
10	Hierarchical Confined Assembly of Bilayer Heterostructures with Programmable Patterns. , 2022, 4, 770-778.		4
11	Enhanced cross-linking performances and carbon black (CB) dispersion in solution styrene butadiene rubber (SSBR) filled with triazine-based graphdiyne (TGDY). Composites Science and Technology, 2022, 223, 109438.	7.8	8
12	Leadâ€Free Chiral 2D Double Perovskite Microwire Arrays for Circularly Polarized Light Detection. Advanced Optical Materials, 2022, 10, .	7.3	21
13	Preparation of a Large Amount of Ultrathin Graphdiyne. Chemistry - A European Journal, 2022, 28, .	3.3	9
14	2D Covalent Organic Frameworks as Photocatalysts for Solar Energy Utilization. Macromolecular Rapid Communications, 2022, 43, e2200108.	3.9	17
15	Synthesis of γ-graphyne using dynamic covalent chemistry. , 2022, 1, 449-454.		106
16	Reversible phase transition for switchable second harmonic generation in 2D perovskite microwires. SmartMat, 2022, 3, 657-667.	10.7	8
17	Bioinspired NADH Regeneration Based on Conjugated Photocatalytic Systems. Solar Rrl, 2021, 5, 2000339.	5.8	56
18	Donor–Acceptor Interactions Induced Interfacial Synthesis of an Ultrathin Fluoric 2D Polymer by Photochemical [2+2] Cycloaddition. Chemistry - A European Journal, 2021, 27, 3661-3664.	3.3	7

#	Article	IF	CITATIONS
19	Triptycene-based three-dimensional covalent organic frameworks with stp topology of honeycomb structure. Materials Chemistry Frontiers, 2021, 5, 944-949.	5.9	26
20	Threeâ€Dimensional Covalentâ€Organic Frameworks Loaded with Highly Dispersed Ultrafine Palladium Nanoparticles as Efficient Heterogeneous Catalyst. ChemNanoMat, 2021, 7, 95-99.	2.8	21
21	Cooperativity in Highly Active Ethylene Dimerization by Dinuclear Nickel Complexes Bearing a Bifunctional PN Ligand. Organometallics, 2021, 40, 184-193.	2.3	16
22	Tessellation strategy for the interfacial synthesis of an anthracene-based 2D polymer <i>via</i> [4+4]-photocycloaddition. Chemical Communications, 2021, 57, 5794-5797.	4.1	3
23	Methane adsorption properties of N-doped graphdiyne: a first-principles study. Structural Chemistry, 2021, 32, 1517-1527.	2.0	6
24	Donor–Acceptor Interactions Induced Interfacial Synthesis of an Ultrathin Fluoric 2D Polymer by Photochemical [2+2] Cycloaddition. Chemistry - A European Journal, 2021, 27, 3574-3574.	3.3	0
25	Donor–acceptor based two-dimensional covalent organic frameworks for near-infrared photothermal conversion. Materials Chemistry Frontiers, 2021, 5, 6575-6581.	5.9	17
26	Crystalline porphyrin-based graphdiyne for electrochemical hydrogen and oxygen evolution reactions. Materials Chemistry Frontiers, 2021, 5, 4596-4603.	5.9	16
27	Direct Synthesis of Crystalline Graphtetrayne—A New Graphyne Allotrope. CCS Chemistry, 2021, 3, 1368-1375.	7.8	26
28	Highly Efficient Preparation of Single-Layer Two-Dimensional Polymer Obtained from Single-Crystal to Single-Crystal Synthesis. Journal of the American Chemical Society, 2021, 143, 5636-5642.	13.7	41
29	Scalable Singleâ€Crystalline Organic 1D Arrays for Image Sensor. Small, 2021, 17, e2100332.	10.0	16
30	Spirobifluorene-Based Three-Dimensional Covalent Organic Frameworks with Rigid Topological Channels as Efficient Heterogeneous Catalyst. CCS Chemistry, 2021, 3, 2418-2427.	7.8	38
31	Chiral 2D-Perovskite Nanowires for Stokes Photodetectors. Journal of the American Chemical Society, 2021, 143, 8437-8445.	13.7	91
32	Single-crystal-to-single-crystal Transformations for the Preparation of Small Molecules, 1D and 2D Polymers Single Crystals. Chemistry Letters, 2021, 50, 1015-1029.	1.3	17
33	Water-soluble host-guest fluorescent systems based on fluorophores and cucurbiturils with AIE or ACQ effects. Dyes and Pigments, 2021, 189, 109267.	3.7	17
34	Single-crystal structure of two-dimensional organic framework based on donor-acceptor interactions with charge-transfer effect. Science China Chemistry, 2021, 64, 1510-1514.	8.2	7
35	High Interfacialâ€Energy and Lithiophilic Janus Interphase Enables Stable Lithium Metal Anodes. Small, 2021, 17, e2102196.	10.0	15
36	Optical and electrical modulation in ultraviolet photodetectors based on organic oneâ€dimensional photochromic arrays. SmartMat, 2021, 2, 388-397.	10.7	22

#	Article	IF	CITATIONS
37	Layered Metalâ€Halide Perovskite Singleâ€Crystalline Microwire Arrays for Anisotropic Nonlinear Optics. Advanced Functional Materials, 2021, 31, 2105855.	14.9	30
38	Triazine-Based Conjugated Microporous Polymers for Efficient Hydrogen Production. ACS Omega, 2021, 6, 23782-23787.	3.5	10
39	Outside Back Cover: Volume 2 Issue 3. SmartMat, 2021, 2, ii.	10.7	0
40	Single-crystal structures of cucurbituril-based supramolecular host–guest complexes for bioimaging. Chemical Communications, 2021, 57, 10190-10193.	4.1	11
41	Heteroatom Doped Graphdiyne and Analogues: Synthesis, Structures and Applications. Chemical Research in Chinese Universities, 2021, 37, 1213-1223.	2.6	7
42	Supramolecular Nanodiscs Selfâ€Assembled from Nonâ€Ionic Heptamethine Cyanine for Imagingâ€Guided Cancer Photothermal Therapy. Advanced Materials, 2020, 32, e1906711.	21.0	82
43	Graphdiyne‣upported Atomic Catalysts: Synthesis and Applications. ChemPlusChem, 2020, 85, 2570-2579.	2.8	6
44	Construction of Thiazolo[5,4- <i>d</i>]thiazole-based Two-Dimensional Network for Efficient Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2020, 12, 46483-46489.	8.0	43
45	Capillary-Bridge Controlled Patterning of Stable Double-Perovskite Microwire Arrays for Non-toxic Photodetectors. Frontiers in Chemistry, 2020, 8, 632.	3.6	9
46	Construction of Fully Conjugated Covalent Organic Frameworks via Facile Linkage Conversion for Efficient Photoenzymatic Catalysis. Journal of the American Chemical Society, 2020, 142, 5958-5963.	13.7	177
47	Interfacial Synthesis of a Monolayered Fluorescent Twoâ€Đimensional Polymer through Dynamic Imine Chemistry. ChemistryOpen, 2020, 9, 381-385.	1.9	7
48	Charge transfer co-crystals based on donor–acceptor interactions for near-infrared photothermal conversion. Chemical Communications, 2020, 56, 5223-5226.	4.1	62
49	A highly selective and active metal-free catalyst for ammonia production. Nanoscale Horizons, 2020, 5, 1274-1278.	8.0	20
50	Interfacial synthesis of crystalline two-dimensional cyano-graphdiyne. Chemical Communications, 2020, 56, 3210-3213.	4.1	44
51	Layeredâ€Perovskite Nanowires with Longâ€Range Orientational Order for Ultrasensitive Photodetectors. Advanced Materials, 2020, 32, e1905298.	21.0	49
52	Confined Interfacial Synthesis of Highly Crystalline and Ultrathin Graphdiyne Films and Their Applications for N ₂ Fixation. Chemistry - A European Journal, 2020, 26, 7801-7807.	3.3	22
53	Grain boundary passivation with triazine-graphdiyne to improve perovskite solar cell performance. Science China Materials, 2020, 63, 2465-2476.	6.3	26
54	Fluorographdiyne: A Metalâ€Free Catalyst for Applications in Water Reduction and Oxidation. Angewandte Chemie, 2019, 131, 14035-14041.	2.0	34

#	Article	IF	CITATIONS
55	Fluorographdiyne: A Metalâ€Free Catalyst for Applications in Water Reduction and Oxidation. Angewandte Chemie - International Edition, 2019, 58, 13897-13903.	13.8	123
56	Interfacial synthesis of ultrathin two-dimensional 2PbCO ₃ ·Pb(OH) ₂ nanosheets with high enzyme mimic catalytic activity. Inorganic Chemistry Frontiers, 2019, 6, 498-503.	6.0	1
57	Sulfur-rich Graphdiyne-Containing Electrochemical Active Tetrathiafulvalene for Highly Efficient Lithium Storage Application. ACS Applied Materials & Interfaces, 2019, 11, 46070-46076.	8.0	29
58	Electrochemical Energy Storage: Graphdiyneâ€Based Materials: Preparation and Application for Electrochemical Energy Storage (Adv. Mater. 42/2019). Advanced Materials, 2019, 31, 1970300.	21.0	20
59	Ultrathin Nanosheet of Graphdiyne-Supported Palladium Atom Catalyst for Efficient Hydrogen Production. IScience, 2019, 11, 31-41.	4.1	149
60	Graphdiyneâ€Based Materials: Preparation and Application for Electrochemical Energy Storage. Advanced Materials, 2019, 31, e1803202.	21.0	136
61	Interfacial Synthesis of Conjugated Crystalline 2D Fluorescent Polymer Film Containing Aggregationâ€Induced Emission Unit. Small, 2019, 15, e1804519.	10.0	19
62	A water-soluble two-dimensional supramolecular organic framework with aggregation-induced emission for DNA affinity and live-cell imaging. Journal of Materials Chemistry B, 2019, 7, 1435-1441.	5.8	40
63	Rationally engineered active sites for efficient and durable hydrogen generation. Nature Communications, 2019, 10, 2281.	12.8	59
64	Construction of two-dimensional supramolecular nanostructure with aggregation-induced emission effect <i>via</i> host–guest interactions. Materials Chemistry Frontiers, 2019, 3, 1532-1537.	5.9	22
65	Fully Conjugated Twoâ€Dimensional sp ² arbon Covalent Organic Frameworks as Artificial Photosystemâ€I with High Efficiency. Angewandte Chemie - International Edition, 2019, 58, 5376-5381.	13.8	230
66	Fully Conjugated Twoâ€Dimensional sp ² arbon Covalent Organic Frameworks as Artificial Photosystemâ€I with High Efficiency. Angewandte Chemie, 2019, 131, 5430-5435.	2.0	59
67	Sulfur-substituted perylene diimides: efficient tuning of LUMO levels and visible-light absorption <i>via</i> sulfur redox. Chemical Communications, 2019, 55, 13570-13573.	4.1	17
68	Direct Synthesis of Crystalline Graphdiyne Analogue Based on Supramolecular Interactions. Journal of the American Chemical Society, 2019, 141, 48-52.	13.7	60
69	Ultrafastly Interweaving Graphdiyne Nanochain on Arbitrary Substrates and Its Performance as a Supercapacitor Electrode. ACS Applied Materials & Interfaces, 2019, 11, 2599-2607.	8.0	58
70	Preparation of N-Graphdiyne Nanosheets at Liquid/Liquid Interface for Photocatalytic NADH Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 2740-2744.	8.0	89
71	Graphdiyne-Doped P3CT-K as an Efficient Hole-Transport Layer for MAPbl ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 2626-2631.	8.0	61
72	Solid‣tate Photodimerization of Azaanthracene Derivative Based on a [4+4] Cycloaddition. Asian Journal of Organic Chemistry, 2018, 7, 906-909.	2.7	7

#	Article	IF	CITATIONS
73	Efficient Hydrogen Production on a 3D Flexible Heterojunction Material. Advanced Materials, 2018, 30, e1707082.	21.0	158
74	Improved electron transport in MAPbI3 perovskite solar cells based on dual doping graphdiyne. Nano Energy, 2018, 46, 331-337.	16.0	135
75	Controlled Synthesis of a Three-Segment Heterostructure for High-Performance Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 1771-1780.	8.0	22
76	Interfacial Synthesis of Conjugated Two-Dimensional N-Graphdiyne. ACS Applied Materials & Interfaces, 2018, 10, 53-58.	8.0	124
77	Controllable Spatial Configuration on Cathode Interface for Enhanced Photovoltaic Performance and Device Stability. ACS Applied Materials & amp; Interfaces, 2018, 10, 17401-17408.	8.0	11
78	Controlled Growth of MoS ₂ Nanosheets on 2D Nâ€Doped Graphdiyne Nanolayers for Highly Associated Effects on Water Reduction. Advanced Functional Materials, 2018, 28, 1707564.	14.9	119
79	Anion-ï€ interactions: From concept to application. Chinese Chemical Letters, 2018, 29, 261-266.	9.0	39
80	Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays. Nature Communications, 2018, 9, 5309.	12.8	287
81	The Emergence of Anionâ~ï€ Catalysis. Accounts of Chemical Research, 2018, 51, 2255-2263.	15.6	165
82	Passive Mixing inside Microdroplets. Micromachines, 2018, 9, 160.	2.9	42
83	Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement. Journal of the American Chemical Society, 2018, 140, 10016-10024.	13.7	195
84	Enolate Stabilization by Anion–π Interactions: Deuterium Exchange in Malonate Dilactones on Ï€â€Acidic Surfaces. Chemistry - A European Journal, 2016, 22, 2648-2657.	3.3	41
85	Enolate Stabilization by Anion–π Interactions: Deuterium Exchange in Malonate Dilactones on Ï€â€Acidic Surfaces. Chemistry - A European Journal, 2016, 22, 2545-2545.	3.3	2
86	Unorthodox Interactions at Work. Journal of the American Chemical Society, 2016, 138, 4270-4277.	13.7	123
87	Big, Strong, Neutral, Twisted, and Chiral π Acids. Chemistry - A European Journal, 2015, 21, 6202-6207.	3.3	17
88	Selective acceleration of disfavored enolate addition reactions by anionâ€"ï€ interactions. Chemical Science, 2015, 6, 6219-6223.	7.4	69
89	Asymmetric Anion-π Catalysis: Enamine Addition to Nitroolefins on π-Acidic Surfaces. Journal of the American Chemical Society, 2015, 137, 11582-11585.	13.7	60
90	Coumarin synthesis on π-acidic surfaces. Supramolecular Chemistry, 2015, 27, 303-309.	1.2	4

#	Article	IF	CITATIONS
91	Enolate chemistry with anionâ€"ï€ interactions. Nature Communications, 2014, 5, 3911.	12.8	68
92	Synthesis of a naphthalenediimide-based cyclophane for controlling anion–arene interactions. Inorganic Chemistry Frontiers, 2014, 1, 661-667.	6.0	10
93	Anionâ^ï€ Catalysis. Journal of the American Chemical Society, 2014, 136, 2101-2111.	13.7	178
94	Catalysis with Anion–π Interactions. Angewandte Chemie - International Edition, 2013, 52, 9940-9943.	13.8	173
95	Innenrücktitelbild: Catalysis with Anion-ï€ Interactions (Angew. Chem. 38/2013). Angewandte Chemie, 2013, 125, 10311-10311.	2.0	1
96	Selective and colorimetric fluoride anion chemosensor based on s-tetrazines. Dalton Transactions, 2012, 41, 13338.	3.3	52
97	Construction of a functional [2]rotaxane with multilevel fluorescence responses. Organic and Biomolecular Chemistry, 2011, 9, 7500.	2.8	16
98	Self-assembly of indolocarbazole-containing macrocyclic molecules. Organic and Biomolecular Chemistry, 2010, 8, 3923.	2.8	21
99	Construction of an interpenetrated structure of macrocycles. Chemical Communications, 2010, 46, 5698.	4.1	39