
Maria Duca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3672463/publications.pdf Version: 2024-02-01

Μλριλ ΠΠΟΛ

#	Article	IF	CITATIONS
1	The triple helix: 50 years later, the outcome. Nucleic Acids Research, 2008, 36, 5123-5138.	6.5	302
2	Targeting the Production of Oncogenic MicroRNAs with Multimodal Synthetic Small Molecules. ACS Chemical Biology, 2014, 9, 711-721.	1.6	99
3	Targeting DNA base pair mismatch with artificial nucleobases. Advances and perspectives in triple helix strategy. Organic and Biomolecular Chemistry, 2011, 9, 326-336.	1.5	60
4	Synthetic small-molecule RNA ligands: future prospects as therapeutic agents. MedChemComm, 2019, 10, 1242-1255.	3.5	53
5	Synthesis and Biological Activity of Sulfonamide Derivatives of Epipodophyllotoxin. Journal of Medicinal Chemistry, 2004, 47, 2365-2374.	2.9	42
6	Synthesis and Biological Study of a New Series of 4â€~-Demethylepipodophyllotoxin Derivatives. Journal of Medicinal Chemistry, 2005, 48, 593-603.	2.9	42
7	Oncogenic MicroRNAs Biogenesis as a Drug Target: Structure–Activity Relationship Studies on New Aminoglycoside Conjugates. Chemistry - A European Journal, 2016, 22, 5350-5362.	1.7	41
8	Modulation of oncogenic miRNA biogenesis using functionalized polyamines. Scientific Reports, 2018, 8, 1667.	1.6	39
9	Design of novel RNA ligands that bind stem–bulge HIV-1 TAR RNA. Chemical Communications, 2010, 46, 6162.	2.2	33
10	Artificial Nucleobase–Amino Acid Conjugates: A New Class of TAR RNA Binding Agents. Chemistry - A European Journal, 2014, 20, 2071-2079.	1.7	33
11	Small-molecule approaches toward the targeting of oncogenic miRNAs: roadmap for the discovery of RNA modulators. Future Medicinal Chemistry, 2016, 8, 803-816.	1.1	31
12	Selective Generation and Reactivity of 5′-Adenosinyl and 2′-Adenosinyl Radicals. Chemistry - A European Journal, 2004, 10, 1249-1255.	1.7	28
13	Molecular basis of the targeting of topoisomerase II-mediated DNA cleavage by VP16 derivatives conjugated to triplex-forming oligonucleotides. Nucleic Acids Research, 2006, 34, 1900-1911.	6.5	27
14	Building of neomycin–nucleobase–amino acid conjugates for the inhibition of oncogenic miRNAs biogenesis. Organic and Biomolecular Chemistry, 2018, 16, 6262-6274.	1.5	27
15	Fluorescent labeling of human mesenchymal stem cells by thiophene fluorophores conjugated to a lipophilic carrier. Chemical Communications, 2010, 46, 7948.	2.2	23
16	Ribosome-targeting antibiotics as inhibitors of oncogenic microRNAs biogenesis: Old scaffolds for new perspectives in RNA targeting. Bioorganic and Medicinal Chemistry, 2015, 23, 5334-5344.	1.4	18
17	Tandem Azide-Alkyne 1,3-Dipolar Cycloaddition/Electrophilic Addition: A Concise Three-Component Route to 4,5-Disubstituted Triazolyl-Nucleosides. Synlett, 2009, 2009, 2123-2126.	1.0	17
18	Design and Implementation of Synthetic RNA Binders for the Inhibition of miR-21 Biogenesis. ACS Medicinal Chemistry Letters, 2021, 12, 899-906.	1.3	17

Maria Duca

#	Article	IF	CITATIONS
19	Contributions of the D-Ring to the Activity of Etoposide against Human Topoisomerase IIα: Potential Interactions with DNA in the Ternary Enzyme–Drug–DNA Complex. Biochemistry, 2011, 50, 5058-5066.	1.2	16
20	Aminoglycoside Conjugation for RNA Targeting: Antimicrobials and Beyond. Chemistry - A European Journal, 2020, 26, 12273-12309.	1.7	14
21	Design of Multimodal Small Molecules Targeting miRNAs Biogenesis: Synthesis and In Vitro Evaluation. Methods in Molecular Biology, 2017, 1517, 137-154.	0.4	13
22	Exploring Heterocycle-Spermine Conjugates as Modulators of Oncogenic microRNAs Biogenesis. ACS Omega, 2018, 3, 16500-16508.	1.6	13
23	Targeting <i>MDR1</i> Gene: Synthesis and Cellular Study of Modified Daunomycin-Triplex-Forming Oligonucleotide Conjugates Able to Inhibit Gene Expression in Resistant Cell Lines. Molecular Pharmacology, 2008, 73, 1568-1577.	1.0	12
24	Novel carbamate derivatives of 4-β-amino-4′-O-demethyl-4-desoxypodophyllotoxin as inhibitors of topoisomerase II: synthesis and biological evaluation. Organic and Biomolecular Chemistry, 2005, 3, 1074-1080.	1.5	11
25	Aminoacylation of transfer RNAs with one and two amino acids. Methods, 2008, 44, 87-99.	1.9	9
26	Inhibition of Patched Drug Efflux Increases Vemurafenib Effectiveness against Resistant BrafV600E Melanoma. Cancers, 2020, 12, 1500.	1.7	9
27	Modeling the reactive properties of tandemly activated tRNAs. Organic and Biomolecular Chemistry, 2008, 6, 3292.	1.5	8
28	Potent Tyrosinase Inhibitory Activity of Curcuminoid Analogues and Inhibition Kinetics Studies. Cosmetics, 2021, 8, 35.	1.5	8
29	Triple Helix-Forming Oligonucleotides Conjugated to New Inhibitors of Topoisomerase II:  Synthesis and Binding Properties. Bioconjugate Chemistry, 2005, 16, 873-884.	1.8	7
30	Synthesis of bisaminoacylated pdCpAs and tandemly activated transfer RNAs. Bioorganic and Medicinal Chemistry, 2007, 15, 4629-4642.	1.4	7
31	Unveiling RNAâ€Binding Properties of Verapamil and Preparation of New Derivatives as Inhibitors of HIVâ€1 Tatâ€TAR Interaction. ChemPlusChem, 2020, 85, 207-216.	1.3	7
32	The Chemical Biologyâ€Medicinal Chemistry Continuum: EFMC′s Vision. ChemBioChem, 2021, 22, 2823-2825.	1.3	7
33	New Chemical Modalities Enabling Specific RNA Targeting and Degradation: Application to SARS-CoV-2 RNA. ACS Central Science, 2020, 6, 1647-1650.	5.3	6
34	Structural Basis for the Exceptional Stability of Bisaminoacylated Nucleotides and Transfer RNAs. Journal of the American Chemical Society, 2011, 133, 11368-11377.	6.6	5
35	Functionalized C-nucleosides as remarkable RNA binders: targeting of prokaryotic ribosomal A-site RNA. Chemical Communications, 2019, 55, 10432-10435.	2.2	5
36	Development of 2-deoxystreptamine–nucleobase conjugates for the inhibition of oncogenic miRNA production. RSC Medicinal Chemistry, 2022, 13, 311-319.	1.7	4

Maria Duca

#	Article	IF	CITATIONS
37	Sequence-Specific Base Pair Mimics Are Efficient Topoisomerase IB Inhibitors. Biochemistry, 2012, 51, 43-51.	1.2	3
38	Differentiation of Cancer Stem Cells by Using Synthetic Small Molecules: Toward New Therapeutic Strategies against Therapy Resistance. ChemMedChem, 2021, 16, 14-29.	1.6	2
39	New Chemical Modalities Enabling Specific RNA Targeting and Degradation: Application to SARS-CoV-2 RNA. ACS Central Science, 2020, 6, 1647-1650.	5.3	1
40	Frontispiece: Aminoglycoside Conjugation for RNA Targeting: Antimicrobials and Beyond. Chemistry - A European Journal, 2020, 26, .	1.7	0