In Su Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3672157/publications.pdf Version: 2024-02-01

IN SU KIM

#	Article	IF	CITATIONS
1	Novel anti-adipogenic effect of CF3-allylated indole in 3T3-L1 cells. Chemico-Biological Interactions, 2022, 352, 109782.	4.0	5
2	Reactivity of triplet diradical intermediates in aqueous media for transition-metal-free Csp2–H alkylation. Cell Reports Physical Science, 2022, , 100819.	5.6	1
3	Assembly of the Hydroxycinnoline Core via Hydrazide-Assisted Rh(III)-Catalyzed C–H Functionalization and Annulation. Synthesis, 2022, 54, 4461-4471.	2.3	10
4	Total Synthesis of Eliglustat via Diastereoselective Amination of Chiral para-Methoxycinnamyl Benzyl Ether. Molecules, 2022, 27, 2603.	3.8	2
5	Synthesis of Succinimide-Linked Indazol-3-ols Derived from Maleimides under Rh(III) Catalysis. ACS Omega, 2022, 7, 14712-14722.	3.5	7
6	Total synthesis of α-1-C-propyl-3,6-di-epi-nojirimycin and polyhydroxyindolizidine alkaloids via regio- and diastereoselective amination of anomeric acetals. Tetrahedron, 2022, , 132809.	1.9	1
7	KO ^{<i>t</i>} Bu-promoted C3-homocoupling of quinoxalinones through single electron transfer from an sp ² carbanion intermediate. Chemical Communications, 2022, 58, 7078-7081.	4.1	5
8	Câ^'H Methylation of Iminoamido Heterocycles with Sulfur Ylides**. Angewandte Chemie, 2021, 133, 193-198.	2.0	5
9	Direct Integration of Phthalazinone and Succinimide Scaffolds via Rh(III)â€Catalyzed Câ^'H Functionalization. Asian Journal of Organic Chemistry, 2021, 10, 202-209.	2.7	12
10	Câ^'H Methylation of Iminoamido Heterocycles with Sulfur Ylides**. Angewandte Chemie - International Edition, 2021, 60, 191-196.	13.8	47
11	Synthesis of spirosuccinimides <i>via</i> annulative cyclization between <i>N</i> -aryl indazolols and maleimides under rhodium(<scp>iii</scp>) catalysis. Chemical Communications, 2021, 57, 10947-10950.	4.1	21
12	Ruthenium(<scp>II</scp>) atalyzed CH/NH Carbonylative Cyclization of <scp>2â€Aryl</scp> Quinazolinones with Isocyanates as <scp>CO</scp> Surrogates. Bulletin of the Korean Chemical Society, 2021, 42, 542-547.	1.9	8
13	Identification of BR102910 as a selective fibroblast activation protein (FAP) inhibitor. Bioorganic and Medicinal Chemistry Letters, 2021, 37, 127846.	2.2	5
14	A novel synthetic microtubule inhibitor exerts antiproliferative effects in multidrug resistant cancer cells and cancer stem cells. Scientific Reports, 2021, 11, 10822.	3.3	7
15	Site-Selective C8-Alkylation of Quinoline <i>N</i> -Oxides with Maleimides under Rh(III) Catalysis. Journal of Organic Chemistry, 2021, 86, 7579-7587.	3.2	11
16	Catalystâ€Free Oneâ€Pot Multiâ€Component Synthesis of 2â€5ubstituted Quinazolinâ€4â€carboxamides from 2â€Aminophenylâ€2â€oxoacetamides, Aldehydes, and Ammonium Acetate. ChemistrySelect, 2021, 6, 5446-5450	.1.5	2
17	Synthesis of (2 <i>H</i>)-Indazoles and Dihydrocinnolinones through Annulation of Azobenzenes with Vinylene Carbonate under Rh(III) Catalysis. Organic Letters, 2021, 23, 5518-5522.	4.6	33
18	Transition-Metal-Free Alkylation and Acylation of Benzoxazinones with 1,4-Dihydropyridines. Journal of Organic Chemistry, 2021, 86, 12247-12256.	3.2	6

#	Article	IF	CITATIONS
19	Synthesis of π-Extended Heterocycles via Rh(III)-Catalyzed Oxidative Annulation of 5-Aryl Pyrazinones with Alkynes. Journal of Organic Chemistry, 2021, 86, 16349-16360.	3.2	6
20	Synthesis of Cinnolines via Rh(III)â€Catalyzed Annulation of <i>N</i> â€Aryl Heterocycles with Vinylene Carbonate. Asian Journal of Organic Chemistry, 2021, 10, 3005-3014.	2.7	16
21	Site-selective and metal-free C–H nitration of biologically relevant N-heterocycles. Archives of Pharmacal Research, 2021, 44, 1012-1023.	6.3	3
22	Deoxygenative Amination of Azine- <i>N</i> -oxides with Acyl Azides via [3 + 2] Cycloaddition. Journal of Organic Chemistry, 2020, 85, 2476-2485.	3.2	21
23	Total synthesis of chromanol 293B and cromakalim via stereoselective amination of chiral benzylic ethers. Tetrahedron Letters, 2020, 61, 151431.	1.4	5
24	Ru(II)-Catalyzed C–H Hydroxyalkylation and Mitsunobu Cyclization of N-Aryl Phthalazinones. Journal of Organic Chemistry, 2020, 85, 2520-2531.	3.2	20
25	Site‣elective C–H Amidation of 2â€Aryl Quinazolinones Using Nitrene Surrogates. European Journal of Organic Chemistry, 2020, 2020, 7134-7143.	2.4	7
26	Ratiometric Turn-On Fluorophore Displacement Ensembles for Nitroaromatic Explosives Detection. Journal of the American Chemical Society, 2020, 142, 19579-19587.	13.7	57
27	Biological Evaluation of Oxindole Derivative as a Novel Anticancer Agent against Human Kidney Carcinoma Cells. Biomolecules, 2020, 10, 1260.	4.0	1
28	Ru(ii)-Catalyzed C–H addition and oxidative cyclization of 2-aryl quinazolinones with activated aldehydes. Organic and Biomolecular Chemistry, 2020, 18, 9611-9622.	2.8	13
29	C2-Selective C–H Methylation of Heterocyclic <i>N</i> -Oxides with Sulfonium Ylides. Organic Letters, 2020, 22, 9004-9009.	4.6	29
30	Transitionâ€Metalâ€Free and Siteâ€Selective Selenylation of Heterocyclic <i>N</i> â€Oxides in Anisole as a Green Solvent. European Journal of Organic Chemistry, 2020, 2020, 4886-4892.	2.4	12
31	Total Synthesis of (±)-Liphagal via Organic-Redox-Driven Palladium-Catalyzed Hydroxybenzofuran Formation. Journal of Organic Chemistry, 2020, 85, 9064-9070.	3.2	2
32	EX-527 Prevents the Progression of High-Fat Diet-Induced Hepatic Steatosis and Fibrosis by Upregulating SIRT4 in Zucker Rats. Cells, 2020, 9, 1101.	4.1	26
33	Phthalazinone-Assisted C–H Amidation Using Dioxazolones Under Rh(III) Catalysis. Journal of Organic Chemistry, 2020, 85, 7014-7023.	3.2	21
34	Synthesis and biological evaluation of quinoxaline derivatives as specific c-Met kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127189.	2.2	7
35	A New Histone Deacetylase Inhibitor, MHY4381, Induces Apoptosis via Generation of Reactive Oxygen Species in Human Prostate Cancer Cells. Biomolecules and Therapeutics, 2020, 28, 184-194.	2.4	18
36	Protective Effects of Dendropanax morbifera against Cisplatin-Induced Nephrotoxicity without Altering Chemotherapeutic Efficacy. Antioxidants, 2019, 8, 256.	5.1	13

#	Article	IF	CITATIONS
37	Allylic Acetals as Acrolein Oxonium Precursors in Tandem Câ [~] 'H Allylation and [3+2] Dipolar Cycloaddition. Angewandte Chemie, 2019, 131, 9570-9574.	2.0	1
38	Site-Selective C–H Alkylation of Diazine <i>N</i> -Oxides Enabled by Phosphonium Ylides. Organic Letters, 2019, 21, 6488-6493.	4.6	27
39	Lewis acid-mediated cross-coupling reaction of 7-azaindoles and aldehydes: Cytotoxic evaluation of C3-linked bis-7-azaindoles. Tetrahedron Letters, 2019, 60, 150974.	1.4	8
40	Estrogen Deficiency Potentiates Thioacetamide-Induced Hepatic Fibrosis in Sprague-Dawley Rats. International Journal of Molecular Sciences, 2019, 20, 3709.	4.1	26
41	Histamine Receptor Antagonists, Loratadine and Azelastine, Sensitize P-gp-overexpressing Antimitotic Drug-resistant KBV20C Cells Through Different Molecular Mechanisms. Anticancer Research, 2019, 39, 3767-3775.	1.1	18
42	Synthesis of (2 H)â€Indazoles from Azobenzenes Using Paraformaldehyde as a One arbon Synthon. Advanced Synthesis and Catalysis, 2019, 361, 1617-1626.	4.3	18
43	Allylic Acetals as Acrolein Oxonium Precursors in Tandem Câ^'H Allylation and [3+2] Dipolar Cycloaddition. Angewandte Chemie - International Edition, 2019, 58, 9470-9474.	13.8	44
44	<i>Dendropanax morbifera</i> Ameliorates Thioacetamide-Induced Hepatic Fibrosis via TGF-β1/Smads Pathways. International Journal of Biological Sciences, 2019, 15, 800-811.	6.4	35
45	Plumbagin from a tropical pitcher plant (Nepenthes alata Blanco) induces apoptotic cell death via a p53-dependent pathway in MCF-7 human breast cancer cells. Food and Chemical Toxicology, 2019, 123, 492-500.	3.6	47
46	Ruthenium(II)-Catalyzed Site-Selective Hydroxymethylation of Indolines with Paraformaldehyde. Journal of Organic Chemistry, 2019, 84, 2307-2315.	3.2	24
47	PKM2 Knockdown Induces Autophagic Cell Death via AKT/mTOR Pathway in Human Prostate Cancer Cells. Cellular Physiology and Biochemistry, 2019, 52, 1535-1552.	1.6	38
48	Synthesis of TMPA Derivatives through Sequential Ir(III)-Catalyzed C–H Alkylation and Their Antidiabetic Evaluation. ACS Omega, 2018, 3, 2661-2672.	3.5	10
49	Ru(II)-Catalyzed C–H Aminocarbonylation of <i>N</i> -(Hetero)aryl-7-azaindoles with Isocyanates. Journal of Organic Chemistry, 2018, 83, 4641-4649.	3.2	26
50	Synthesis of 2-Benzazepines from Benzylamines and MBH Adducts Under Rhodium(III) Catalysis via C(sp ²)–H Functionalization. ACS Catalysis, 2018, 8, 742-746.	11.2	41
51	Synthesis of (2 <i>H</i>)-Indazoles through Rh(III)-Catalyzed Annulation Reaction of Azobenzenes with Sulfoxonium Ylides. Journal of Organic Chemistry, 2018, 83, 4070-4077.	3.2	90
52	One-pot synthesis of 2-naphthols from nitrones and MBH adducts <i>via</i> decarboxylative N–O bond cleavage. Organic Chemistry Frontiers, 2018, 5, 3210-3218.	4.5	21
53	Recent advances in N-heterocycles synthesis through catalytic Câ^'H functionalization of azobenzenes. Tetrahedron, 2018, 74, 6769-6794.	1.9	36
54	Afrocyclamin A, a triterpene saponin, induces apoptosis and autophagic cell death via the PI3K/Akt/mTOR pathway in human prostate cancer cells. Phytomedicine, 2018, 51, 139-150.	5.3	31

#	Article	IF	CITATIONS
55	A New Synthetic Histone Deacetylase Inhibitor, MHY2256, Induces Apoptosis and Autophagy Cell Death in Endometrial Cancer Cells via p53 Acetylation. International Journal of Molecular Sciences, 2018, 19, 2743.	4.1	48
56	Site-selective C–H nitration of N-aryl-7-azaindoles under palladium(II) catalysis. Tetrahedron Letters, 2018, 59, 3848-3852.	1.4	7
57	Disparate Downstream Reactions Mediated by an Ionically Controlled Supramolecular Tristate Switch. Journal of the American Chemical Society, 2018, 140, 7598-7604.	13.7	32
58	Reductive C2â€Alkylation of Pyridine and Quinoline <i>N</i> â€Oxides Using Wittig Reagents. Angewandte Chemie - International Edition, 2018, 57, 12737-12740.	13.8	69
59	Reactivity of Morita–Baylis–Hillman Adducts in C–H Functionalization of (Hetero)aryl Nitrones: Access to Bridged Cycles and Carbazoles. Organic Letters, 2018, 20, 4632-4636.	4.6	28
60	Reductive C2â€Alkylation of Pyridine and Quinoline <i>N</i> â€Oxides Using Wittig Reagents. Angewandte Chemie, 2018, 130, 12919-12922.	2.0	9
61	Direct Synthesis of 2â€Acyl Acridines Using Aldimines and Anthranils: Evaluation of Cytotoxicity and Antiâ€Inflammatory Activity. Asian Journal of Organic Chemistry, 2018, 7, 2069-2075.	2.7	14
62	Dual Role of Anthranils as Amination and Transient Directing Group Sources: Synthesis of 2-Acyl Acridines. Organic Letters, 2018, 20, 4010-4014.	4.6	67
63	Cp*Rh(<scp>iii</scp>)-catalyzed C(sp ³)–H alkylation of 8-methylquinolines in aqueous media. Chemical Communications, 2017, 53, 3006-3009.	4.1	60
64	Installation of α-ketocarboxylate groups to C7-position of indolines via Câ^'H addition and oxidation approach under ruthenium catalysis. Tetrahedron, 2017, 73, 1725-1732.	1.9	16
65	Synthesis and Cytotoxic Evaluation of <i>N</i> â€Aroylureas through Rhodium(III) atalyzed Câ^'H Functionalization of Indolines with Isocyanates. Advanced Synthesis and Catalysis, 2017, 359, 2329-2336.	4.3	28
66	Rhodium-Catalyzed [3 + 2] Annulation of Cyclic <i>N</i> Acyl Ketimines with Activated Olefins: Anticancer Activity of Spiroisoindolinones. Journal of Organic Chemistry, 2017, 82, 3359-3367.	3.2	89
67	Site-selective Cp*Rh(<scp>iii</scp>)-catalyzed C–H amination of indolines with anthranils. Organic Chemistry Frontiers, 2017, 4, 241-249.	4.5	58
68	Synthesis and Anti-inflammatory Evaluation of 2-Aminobenzaldehydes via Ir(III)-Catalyzed C–H Amidation of Aldimines with Acyl Azides. Journal of Organic Chemistry, 2017, 82, 7555-7563.	3.2	28
69	Oneâ€pot Synthesis of Oxindoles through Câ^H Alkylation and Intramolecular Cyclization of Azobenzenes with Internal Olefins. Advanced Synthesis and Catalysis, 2017, 359, 2396-2401.	4.3	33
70	Synthesis and anti-inflammatory evaluation of N -sulfonyl anthranilic acids via Ir(III)-catalyzed C–H amidation of benzoic acids. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2129-2134.	2.2	16
71	Recent Advances in Catalytic C(sp ²)–H Allylation Reactions. ACS Catalysis, 2017, 7, 2821-2847.	11.2	250
72	Total Synthesis and Anti-inflammatory Evaluation of Penchinone A and Its Structural Analogues. Journal of Organic Chemistry, 2017, 82, 11566-11572.	3.2	13

#	Article	IF	CITATIONS
73	Front Cover: Synthesis and Anticancer Evaluation of 2,3-Disubstituted Indoles Derived from Azobenzenes and Internal Olefins (Eur. J. Org. Chem. 42/2017). European Journal of Organic Chemistry, 2017, 2017, 6246-6246.	2.4	0
74	Rhodium(III) atalyzed Diastereoselective Synthesis of 1â€Aminoindanes via Câ^'H Activation. Advanced Synthesis and Catalysis, 2017, 359, 3900-3904.	4.3	33
75	Synthesis of Indenes that are Derived from Aldimines with Enones Under Rhodium(III) Catalysis. Asian Journal of Organic Chemistry, 2017, 6, 1823-1829.	2.7	6
76	C(sp ³)–H amination of 8-methylquinolines with azodicarboxylates under Rh(<scp>iii</scp>) catalysis: cytotoxic evaluation of quinolin-8-ylmethanamines. Chemical Communications, 2017, 53, 11197-11200.	4.1	22
77	Front Cover Picture: Siteâ€Selective Rhodium(III)â€Catalyzed Câ^'H Amination of 7â€Azaindoles with Anthranils: Synthesis and Anticancer Evaluation (Adv. Synth. Catal. 20/2017). Advanced Synthesis and Catalysis, 2017, 359, 3469-3469.	4.3	2
78	Synthesis and Anticancer Evaluation of 2,3â€Disubstituted Indoles Derived from Azobenzenes and Internal Olefins. European Journal of Organic Chemistry, 2017, 2017, 6265-6273.	2.4	18
79	Site‣elective Rhodium(III)â€Catalyzed Câ^'H Amination of 7â€Azaindoles with Anthranils: Synthesis and Anticancer Evaluation. Advanced Synthesis and Catalysis, 2017, 359, 3471-3478.	4.3	62
80	Rh(III)-catalyzed Câ^'H alkylation of indolines with enones through conjugate addition and protonation pathway. Tetrahedron, 2017, 73, 4739-4749.	1.9	18
81	Anticancer Effects of a New SIRT Inhibitor, MHY2256, against Human Breast Cancer MCF-7 Cells via Regulation of MDM2-p53 Binding. International Journal of Biological Sciences, 2016, 12, 1555-1567.	6.4	47
82	Synthesis of Phthalides through Tandem Rhodiumâ€Catalyzed C–H Olefination and Annulation of Benzamides. European Journal of Organic Chemistry, 2016, 2016, 3076-3083.	2.4	7
83	Cross-Coupling of Acrylamides and Maleimides under Rhodium Catalysis: Controlled Olefin Migration. Organic Letters, 2016, 18, 2568-2571.	4.6	68
84	Trifluoromethylallylation of Heterocyclic C–H Bonds with Allylic Carbonates under Rhodium Catalysis. Journal of Organic Chemistry, 2016, 81, 4771-4778.	3.2	31
85	Site‣elective C–H Amidation of Azobenzenes with Dioxazolones under Rhodium Catalysis. European Journal of Organic Chemistry, 2016, 2016, 4976-4980.	2.4	35
86	Rh(III)-Catalyzed C–H Functionalization of Indolines with Readily Accessible Amidating Reagent: Synthesis and Anticancer Evaluation. Journal of Organic Chemistry, 2016, 81, 9878-9885.	3.2	84
87	Ruthenium(II)―or Rhodium(III)â€Catalyzed Grignardâ€Type Addition of Indolines and Indoles to Activated Carbonyl Compounds. Advanced Synthesis and Catalysis, 2016, 358, 2714-2720.	4.3	56
88	Rhodium(III)-Catalyzed C(sp ³)–H Alkylation of 8-Methylquinolines with Maleimides. Organic Letters, 2016, 18, 4666-4669.	4.6	95
89	Front Cover Picture: Ruthenium(II)―or Rhodium(III)â€Catalyzed Grignardâ€Type Addition of Indolines and Indoles to Activated Carbonyl Compounds (Adv. Synth. Catal. 17/2016). Advanced Synthesis and Catalysis, 2016, 358, 2713-2713.	4.3	0
90	Synthesis of Succinimide-Containing Chromones, Naphthoquinones, and Xanthones under Rh(III) Catalysis: Evaluation of Anticancer Activity. Journal of Organic Chemistry, 2016, 81, 12416-12425.	3.2	88

#	Article	IF	CITATIONS
91	Rhodium-Catalyzed Vinylic C-H Functionalization of Enol Carbamates with Maleimides. European Journal of Organic Chemistry, 2016, 2016, 3611-3618.	2.4	32
92	Redox-Neutral Rh(III)-Catalyzed Olefination of Carboxamides with Trifluoromethyl Allylic Carbonate. Journal of Organic Chemistry, 2016, 81, 11353-11359.	3.2	14
93	Computer-aided identification of new histone deacetylase 6 selective inhibitor with anti-sepsis activity. European Journal of Medicinal Chemistry, 2016, 116, 126-135.	5.5	17
94	Mild and Site-Selective Allylation of Enol Carbamates with Allylic Carbonates under Rhodium Catalysis. Journal of Organic Chemistry, 2016, 81, 2243-2251.	3.2	38
95	Access to 3-Acyl-(2 <i>H</i>)-indazoles via Rh(III)-Catalyzed C–H Addition and Cyclization of Azobenzenes with α-Keto Aldehydes. Organic Letters, 2016, 18, 232-235.	4.6	78
96	Discovery and SAR of N-(1-((substituted) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 552 Td (piperidin-4-yl)methyl)-3-r receptor 4 agonist as a potent prokinetic agent. European Journal of Medicinal Chemistry, 2016, 109, 75-88.	nethoxypi 5.5	peridin-4-yl)-2 3
97	Rhodium(III)-catalyzed heteroatom-directed C–H allylation with allylic phosphonates and allylic carbonates at room temperature. Tetrahedron, 2016, 72, 571-578.	1.9	21
98	Rh(<scp>III</scp>) atalyzed <i>ortho</i> â€Alkylation of <i>N</i> â€Benzyltriflamides with Diazo Compounds. Bulletin of the Korean Chemical Society, 2015, 36, 2823-2828.	1.9	8
99	Rh(III)-Catalyzed Direct Coupling of Azobenzenes with α-Diazo Esters: Facile Synthesis of Cinnolin-3(2 <i>H</i>)-ones. Organic Letters, 2015, 17, 2852-2855.	4.6	108
100	Mild Rh(III)-Catalyzed C7-Allylation of Indolines with Allylic Carbonates. Journal of Organic Chemistry, 2015, 80, 1818-1827.	3.2	76
101	Total synthesis of carbocyclic nucleoside (+)-neplanocin A. Tetrahedron, 2015, 71, 1068-1073.	1.9	15
102	Direct and Site‧elective Palladiumâ€Catalyzed Câ€7 Acylation of Indolines with Aldehydes. Advanced Synthesis and Catalysis, 2015, 357, 594-600.	4.3	63
103	Rh(III)-catalyzed C–H alkylation of 2-arylbenzothiazoles with α-diazo esters. Tetrahedron Letters, 2015, 56, 4678-4682.	1.4	34
104	Rh(III)-Catalyzed C–H Amidation of Indoles with Isocyanates. Journal of Organic Chemistry, 2015, 80, 7243-7250.	3.2	42
105	Synthesis of N-Sulfonylamidated and Amidated Azobenzenes under Rhodium Catalysis. Journal of Organic Chemistry, 2015, 80, 8026-8035.	3.2	32
106	Divergent Synthesis of Aminocyclopentitol Analogues via Stereoselective Amination of Cyclic Polybenzyl Ether with Chlorosulfonyl Isocyanate. Synlett, 2015, 26, 1089-1092.	1.8	8
107	Rhodium-catalyzed mild and selective C–H allylation of indolines and indoles with 4-vinyl-1,3-dioxolan-2-one: facile access to indolic scaffolds with an allylic alcohol moiety. Tetrahedron, 2015, 71, 2435-2441.	1.9	49
108	Rhodium(III)â€Catalyzed Selective CH Cyanation of Indolines and Indoles with an Easily Accessible Cyano Source. Advanced Synthesis and Catalysis, 2015, 357, 1293-1298.	4.3	95

#	Article	IF	CITATIONS
109	Effects of the CYP2D6*10 allele on the pharmacokinetics of atomoxetine and its metabolites. Archives of Pharmacal Research, 2015, 38, 2083-2091.	6.3	42
110	Direct C–H alkylation and indole formation of anilines with diazo compounds under rhodium catalysis. Chemical Communications, 2015, 51, 17229-17232.	4.1	106
111	Rhodium-Catalyzed C–H Alkylation of Indolines with Allylic Alcohols: Direct Access to β-Aryl Carbonyl Compounds. Journal of Organic Chemistry, 2015, 80, 11092-11099.	3.2	63
112	Transition-Metal-Catalyzed Oxidative and Decarboxylative Acylations through sp2 C-H Bond Activation. Current Organic Chemistry, 2015, 20, 471-511.	1.6	24
113	Direct access to isoindolines through tandem Rh(<scp>iii</scp>)-catalyzed alkenylation and cyclization of N-benzyltriflamides. Chemical Communications, 2014, 50, 2350-2352.	4.1	51
114	Pd-Catalyzed Oxidative Coupling of Arene C–H Bonds with Benzylic Ethers as Acyl Equivalents. Journal of Organic Chemistry, 2014, 79, 275-284.	3.2	50
115	Direct allylation of aromatic and \hat{l}_{\pm}, \hat{l}^2 -unsaturated carboxamides under ruthenium catalysis. Chemical Communications, 2014, 50, 11303.	4.1	80
116	Ru(II)-Catalyzed Selective C–H Amination of Xanthones and Chromones with Sulfonyl Azides: Synthesis and Anticancer Evaluation. Journal of Organic Chemistry, 2014, 79, 9262-9271.	3.2	61
117	Rh-catalyzed oxidative C2-alkenylation of indoles with alkynes: unexpected cleavage of directing group. Tetrahedron Letters, 2014, 55, 3104-3107.	1.4	32
118	Decarboxylative acylation of indolines with α-keto acids under palladium catalysis: a facile strategy for the synthesis of 7-substituted indoles. Chemical Communications, 2014, 50, 14249-14252.	4.1	109
119	Rh-catalyzed oxidative C–C bond formation and C–N bond cleavage: direct access to C2-olefinated free (NH)-indoles and pyrroles. Organic and Biomolecular Chemistry, 2014, 12, 1703-1706.	2.8	51
120	Rh(III)-Catalyzed Oxidative Coupling of 1,2-Disubstituted Arylhydrazines and Olefins: A New Strategy for 2,3-Dihydro-1H-Indazoles. Organic Letters, 2014, 16, 2494-2497.	4.6	54
121	Discovery of novel 2-[2-(3-hydroxy-pyridin-2-yl)-thiazol-4-yl]-acetamide derivatives as HIF prolyl 4-hydroxylase inhibitors; SAR, synthesis and modeling evaluation. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3142-3145.	2.2	13
122	Palladium atalyzed Direct Acylation of Ketoximes and Aldoximes from the Alcohol Oxidation Level through C–H Bond Activation. European Journal of Organic Chemistry, 2013, 2013, 6656-6665.	2.4	33
123	Synthesis and C2-functionalization of indoles with allylic acetates under rhodium catalysis. Organic and Biomolecular Chemistry, 2013, 11, 7427.	2.8	44
124	Asymmetric total synthesis of (+)-indatraline via diastereoselective amination ofÂchiral ethers using chlorosulfonyl isocyanate. Tetrahedron, 2013, 69, 1877-1880.	1.9	22
125	Palladium atalyzed Decarboxylative Acylation of <i>O</i> â€Phenyl Carbamates with αâ€Oxocarboxylic Acids at Room Temperature. Advanced Synthesis and Catalysis, 2013, 355, 667-672.	4.3	57
126	Palladium atalyzed Oxidative Acylation of <i>N</i> â€Benzyltriflamides with Aldehydes <i>via</i> CH Bond Activation. Advanced Synthesis and Catalysis, 2013, 355, 332-336.	4.3	28

#	Article	IF	CITATIONS
127	Asymmetric Formal Synthesis of (–)â€5wainsonine by a Highly Regioselective and Diastereoselective Allylic Amination Using Chlorosulfonyl Isocyanate. European Journal of Organic Chemistry, 2013, 2013, 4427-4433.	2.4	14
128	Tandem Rh(III)-Catalyzed Oxidative Acylation of Secondary Benzamides with Aldehydes and Intramolecular Cyclization: The Direct Synthesis of 3-Hydroxyisoindolin-1-ones. Organic Letters, 2012, 14, 906-909.	4.6	145
129	Stereoselective Synthesis of (–)â€î±â€€onhydrine and Its Pyrrolidine Analogue. European Journal of Organic Chemistry, 2012, 2012, 4200-4205.	2.4	12
130	Asymmetric total synthesis of (S)-dapoxetine. Tetrahedron Letters, 2012, 53, 3680-3682.	1.4	21
131	Stereoselective Amination of Chiral Benzylic Ethers Using Chlorosulfonyl Isocyanate: Total Synthesis of (+)-Sertraline. Journal of Organic Chemistry, 2011, 76, 10011-10019.	3.2	47
132	Rhodium-Catalyzed Oxidativeortho-Acylation of Benzamides with Aldehydes: Direct Functionalization of the sp2C–H Bond. Organic Letters, 2011, 13, 4390-4393.	4.6	159
133	Recent Advances in the Total Synthesis of Indolizidine Iminosugars. Heterocycles, 2011, 83, 2489.	0.7	41
134	Novel synthetic method for allylic amination of cyclic allylic ethers using chlorosulfonyl isocyanate. Tetrahedron Letters, 2011, 52, 1901-1904.	1.4	13
135	Synthesis of (2R,5S)-dihydroxymethyl-(3R,4R)-dihydroxypyrrolidine (DGDP) via stereoselective amination using chlorosulfonyl isocyanate. Carbohydrate Research, 2007, 342, 1502-1509.	2.3	20
136	Palladium(II)-Catalyzed Isomerization of Olefins with Tributyltin Hydride. Journal of Organic Chemistry, 2007, 72, 5424-5426.	3.2	51
137	Regioselective and Diastereoselective Amination of Polybenzyl Ethers Using Chlorosulfonyl Isocyanate:  Total Syntheses of 1,4-Dideoxy-1,4-imino-d-arabinitol and (â^')-Lentiginosine. Organic Letters, 2006. 8. 4101-4104.	4.6	49