
Pingqiang Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3671985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Haptically Quantifying Young's Modulus of Soft Materials Using a Self‣ocked Stretchable Strain Sensor. Advanced Materials, 2022, 34, e2104078.	21.0	39
2	Reprogramming Mitochondrial Metabolism in Synovial Macrophages of Early Osteoarthritis by a Camouflaged Metaâ€Defensome. Advanced Materials, 2022, 34, .	21.0	25
3	Highly specific differentiation of MSCs into neurons directed by local electrical stimuli triggered wirelessly by electromagnetic induction nanogenerator. Nano Energy, 2022, 100, 107483.	16.0	13
4	Editorial: Advanced Silica Nanomaterials for Drug Delivery. Frontiers in Chemistry, 2021, 9, 677647.	3.6	1
5	Spatiotemporal Oscillation in Confined Epithelial Motion upon Fluid-to-Solid Transition. ACS Nano, 2021, 15, 7618-7627.	14.6	12
6	Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. Advanced Materials, 2021, 33, e2007977.	21.0	34
7	An on-demand plant-based actuator created using conformable electrodes. Nature Electronics, 2021, 4, 134-142.	26.0	81
8	Structural Regulation of Myocytes in Engineered Healthy and Diseased Cardiac Models. ACS Applied Bio Materials, 2021, 4, 267-276.	4.6	1
9	Artificial Sense Technology: Emulating and Extending Biological Senses. ACS Nano, 2021, 15, 18671-18678.	14.6	64
10	Artificial Sensory Memory. Advanced Materials, 2020, 32, e1902434.	21.0	200
11	A Compliant Ionic Adhesive Electrode with Ultralow Bioelectronic Impedance. Advanced Materials, 2020, 32, e2003723.	21.0	86
12	Devising Materials Manufacturing Toward Labâ€ŧoâ€Fab Translation of Flexible Electronics. Advanced Materials, 2020, 32, e2001903.	21.0	60
13	An artificial sensory neuron with visual-haptic fusion. Nature Communications, 2020, 11, 4602.	12.8	166
14	Actin-ring segment switching drives nonadhesive gap closure. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33263-33271.	7.1	12
15	Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures. Nature Communications, 2020, 11, 2183.	12.8	47
16	Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nature Electronics, 2020, 3, 563-570.	26.0	298
17	Polymeric Nonviral Gene Delivery Systems for Cancer Immunotherapy. Advanced Therapeutics, 2020, 3, 1900213.	3.2	30
18	A supertough electro-tendon based on spider silk composites. Nature Communications, 2020, 11, 1332.	12.8	73

PINGQIANG CAI

#		Article	IF	CITATIONS
19	9	Thermalâ€Disrupting Interface Mitigates Intercellular Cohesion Loss for Accurate Topical Antibacterial Therapy. Advanced Materials, 2020, 32, e1907030.	21.0	75
2	0	Mechanically Interlocked Hydrogel–Elastomer Hybrids for On‣kin Electronics. Advanced Functional Materials, 2020, 30, 1909540.	14.9	120
2	1	Broadband Extrinsic Selfâ€Trapped Exciton Emission in Snâ€Doped 2D Leadâ€Halide Perovskites. Advanced Materials, 2019, 31, e1806385.	21.0	198
2:	2	Hydrogels for Artificial Vitreous: From Prolonged Substitution to Elicited Regeneration. , 2019, 1, 285-289.		22
2	3	A silk-based sealant with tough adhesion for instant hemostasis of bleeding tissues. Nanoscale Horizons, 2019, 4, 1333-1341.	8.0	104
24	4	Differential Homeostasis of Sessile and Pendant Epithelium Reconstituted in a 3Dâ€Printed "GeminiChip― Advanced Materials, 2019, 31, e1900514.	21.0	12
2	5	Nanomaterials Discovery and Design through Machine Learning. Small Methods, 2019, 3, 1900025.	8.6	67
2	6	Plasticizing Silk Protein for On‣kin Stretchable Electrodes. Advanced Materials, 2018, 30, e1800129.	21.0	230
2'	7	Mechanoâ€Based Transductive Sensing for Wearable Healthcare. Small, 2018, 14, e1702933.	10.0	91
2	8	Synergistic Lysosomal Activatable Polymeric Nanoprobe Encapsulating pH Sensitive Imidazole Derivative for Tumor Diagnosis. Small, 2018, 14, 1703164.	10.0	36
2	9	Mediating Shortâ€Term Plasticity in an Artificial Memristive Synapse by the Orientation of Silica Mesopores. Advanced Materials, 2018, 30, e1706395.	21.0	100
3	0	Engineering subcellular-patterned biointerfaces to regulate the surface wetting of multicellular spheroids. Nano Research, 2018, 11, 5704-5715.	10.4	13
3	1	Enhancing the Matrix Addressing of Flexible Sensory Arrays by a Highly Nonlinear Threshold Switch. Advanced Materials, 2018, 30, e1802516.	21.0	70
3	2	Combinatorial Nano–Bio Interfaces. ACS Nano, 2018, 12, 5078-5084.	14.6	84
3	3	Biomechanoâ€Interactive Materials and Interfaces. Advanced Materials, 2018, 30, e1800572.	21.0	93
3.	4	Programmable Nano–Bio Interfaces for Functional Biointegrated Devices. Advanced Materials, 2017, 29, 1605529.	21.0	118
3	5	Nanomechanically Visualizing Drug–Cell Interaction at the Early Stage of Chemotherapy. ACS Nano, 2017, 11, 6996-7005.	14.6	41

Biointegrated Devices: Programmable Nano $\hat{a} \in Bio$ Interfaces for Functional Biointegrated Devices (Adv.) Tj ETQq0 0.0 rgBT / gverlock 10 21.0 PV / gve

PINGQIANG CAI

#	Article	IF	CITATIONS
37	Nanomechanical Force Mapping of Restricted Cell-To-Cell Collisions Oscillating between Contraction and Relaxation. ACS Nano, 2017, 11, 12302-12310.	14.6	25
38	Orientational Coupling Locally Orchestrates a Cell Migration Pattern for Reâ€Epithelialization. Advanced Materials, 2017, 29, 1700145.	21.0	33
39	Bioâ€Inspired Mechanotactic Hybrids for Orchestrating Tractionâ€Mediated Epithelial Migration. Advanced Materials, 2016, 28, 3102-3110.	21.0	66
40	Regenerative Medicine: Conjugated Polymer Nanodots as Ultrastable Long-Term Trackers to Understand Mesenchymal Stem Cell Therapy in Skin Regeneration (Adv. Funct. Mater. 27/2015). Advanced Functional Materials, 2015, 25, 4262-4262.	14.9	0
41	Conjugated Polymer Nanodots as Ultrastable Longâ€Term Trackers to Understand Mesenchymal Stem Cell Therapy in Skin Regeneration. Advanced Functional Materials, 2015, 25, 4263-4273.	14.9	47
42	Role of Cytoskeletal Tension in the Induction of Cardiomyogenic Differentiation in Micropatterned Human Mesenchymal Stem Cell. Advanced Healthcare Materials, 2015, 4, 1399-1407.	7.6	28
43	Bio-inspired micropatterned hydrogel to direct and deconstruct hierarchical processing of geometry-force signals by human mesenchymal stem cells during smooth muscle cell differentiation. NPG Asia Materials, 2015, 7, e199-e199.	7.9	51
44	Conjugated polymer and drug co-encapsulated nanoparticles for Chemo- and Photo-thermal Combination Therapy with two-photon regulated fast drug release. Nanoscale, 2015, 7, 3067-3076.	5.6	92
45	Threeâ€Dimensional Graphene Composite Macroscopic Structures for Capture of Cancer Cells. Advanced Materials Interfaces, 2014, 1, 1300043.	3.7	82
46	Orthogonally Engineering Matrix Topography and Rigidity to Regulate Multicellular Morphology. Advanced Materials, 2014, 26, 5786-5793.	21.0	47
47	Nanoparticles Strengthen Intracellular Tension and Retard Cellular Migration. Nano Letters, 2014, 14, 83-88.	9.1	191
48	Gold Nanotip Array for Ultrasensitive Electrochemical Sensing and Spectroscopic Monitoring. Small, 2013, 9, 2260-2265.	10.0	23
49	Organic Dots with Aggregation-Induced Emission (AIE Dots) Characteristics for Dual-Color Cell Tracing. Chemistry of Materials, 2013, 25, 4181-4187.	6.7	115
50	Loss of TAK1 increases cell traction force in a ROS-dependent manner to drive epithelial–mesenchymal transition of cancer cells. Cell Death and Disease, 2013, 4, e848-e848.	6.3	40
51	Chemosynthesis of Poly(ε-lysine)-Analogous Polymers by Microwave-Assisted Click Polymerization. Biomacromolecules, 2011, 12, 737-746.	5.4	45