
Siddhartha Mishra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3671957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimates on the generalization error of physics-informed neural networks for approximating PDEs. IMA Journal of Numerical Analysis, 2023, 43, 1-43.	2.9	26
2	Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs. IMA Journal of Numerical Analysis, 2022, 42, 981-1022.	2.9	113
3	Error estimates for DeepONets: a deep learning framework in infinite dimensions. Transactions of Mathematics and Its Applications, 2022, 6, .	3.3	32
4	On Bayesian data assimilation for PDEs with ill-posed forward problems. Inverse Problems, 2022, 38, 085012.	2.0	1
5	A multi-level procedure for enhancing accuracy of machine learning algorithms. European Journal of Applied Mathematics, 2021, 32, 436-469.	2.9	15
6	Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks. Computer Methods in Applied Mechanics and Engineering, 2021, 374, 113575.	6.6	35
7	Statistical solutions of the incompressible Euler equations. Mathematical Models and Methods in Applied Sciences, 2021, 31, 223-292.	3.3	7
8	On the conservation of energy in two-dimensional incompressible flows. Nonlinearity, 2021, 34, 1084-1135.	1.4	5
9	Physics informed neural networks for simulating radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 270, 107705.	2.3	56
10	On the approximation of functions by tanh neural networks. Neural Networks, 2021, 143, 732-750.	5.9	46
11	On the Convergence of the Spectral Viscosity Method for the Two-Dimensional Incompressible Euler Equations with Rough Initial Data. Foundations of Computational Mathematics, 2020, 20, 1309-1362.	2.5	5
12	Statistical solutions of hyperbolic systems of conservation laws: Numerical approximation. Mathematical Models and Methods in Applied Sciences, 2020, 30, 539-609.	3.3	13
13	Deep learning observables in computational fluid dynamics. Journal of Computational Physics, 2020, 410, 109339.	3.8	86
14	ON THE CONVERGENCE OF NUMERICAL SCHEMES FOR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS. , 2019, , .		2
15	Entropy-stable space–time DG schemes for non-conservative hyperbolic systems. ESAIM: Mathematical Modelling and Numerical Analysis, 2018, 52, 995-1022.	1.9	8
16	Numerical Approximation of Statistical Solutions of Scalar Conservation Laws. SIAM Journal on Numerical Analysis, 2018, 56, 2989-3009.	2.3	6
17	A machine learning framework for data driven acceleration of computations of di erential equations. Mathematics in Engineering, 2018, 1, 118-146.	0.9	38
18	Construction of Approximate Entropy Measure-Valued Solutions for Hyperbolic Systems of Conservation Laws. Foundations of Computational Mathematics, 2017, 17, 763-827.	2.5	65

SIDDHARTHA MISHRA

#	Article	IF	CITATIONS
19	Numerical Methods for Conservation Laws With Discontinuous Coefficients. Handbook of Numerical Analysis, 2017, 18, 479-506.	1.8	5
20	Numerics and subgridâ€scale modeling in large eddy simulations of stratocumulus clouds. Journal of Advances in Modeling Earth Systems, 2017, 9, 1342-1365.	3.8	43
21	Statistical Solutions of Hyperbolic Conservation Laws: Foundations. Archive for Rational Mechanics and Analysis, 2017, 226, 809-849.	2.4	23
22	Schemes with Well-Controlled Dissipation. Hyperbolic Systems in Nonconservative Form. Communications in Computational Physics, 2017, 21, 913-946.	1.7	11
23	Uncertainty Quantification for Hyperbolic Systems of Conservation Laws. Handbook of Numerical Analysis, 2017, 18, 507-544.	1.8	12
24	Monte-Carlo Finite-Volume Methods in Uncertainty Quantification for Hyperbolic Conservation Laws. SEMA SIMAI Springer Series, 2017, , 231-277.	0.7	2
25	A well-balanced finite volume scheme for the Euler equations with gravitation. Astronomy and Astrophysics, 2016, 587, A94.	5.1	59
26	Entropy Stable Scheme on Two-Dimensional Unstructured Grids for Euler Equations. Communications in Computational Physics, 2016, 19, 1111-1140.	1.7	36
27	On the computation of measure-valued solutions. Acta Numerica, 2016, 25, 567-679.	10.7	63
28	Multi-level Monte Carlo finite volume methods for uncertainty quantification of acoustic wave propagation in random heterogeneous layered medium. Journal of Computational Physics, 2016, 312, 192-217.	3.8	28
29	Tunneling Time and Weak Measurement in Strong Field Ionization. Physical Review Letters, 2016, 116, 233603.	7.8	87
30	Numerical Solution of Scalar Conservation Laws with Random Flux Functions. SIAM-ASA Journal on Uncertainty Quantification, 2016, 4, 552-591.	2.0	28
31	Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks and Heterogeneous Media, 2016, 11, 145-162.	1.1	6
32	Efficient Preconditioners for a Shock Capturing Space-Time Discontinuous Galerkin Method for Systems of Conservation Laws. Communications in Computational Physics, 2015, 17, 1320-1359.	1.7	3
33	Largeâ€eddy simulation in an anelastic framework with closed water and entropy balances. Journal of Advances in Modeling Earth Systems, 2015, 7, 1425-1456.	3.8	38
34	Computation of measure-valued solutions for the incompressible Euler equations. Mathematical Models and Methods in Applied Sciences, 2015, 25, 2043-2088.	3.3	12
35	Schemes with Well-Controlled Dissipation. SIAM Journal on Numerical Analysis, 2015, 53, 674-699.	2.3	6
36	Accurate numerical schemes for approximating initial-boundary value problems for systems of conservation laws. Journal of Hyperbolic Differential Equations, 2015, 12, 61-86.	0.5	7

SIDDHARTHA MISHRA

#	Article	IF	CITATIONS
37	Entropy stable shock capturing space–time discontinuous Galerkin schemes for systems of conservation laws. Numerische Mathematik, 2014, 126, 103-151.	1.9	78
38	Analysis and numerical approximation of Brinkman regularization of two-phase flows in porous media. Computational Geosciences, 2014, 18, 637-659.	2.4	16
39	Numerical methods with controlled dissipation for small-scale dependent shocks. Acta Numerica, 2014, 23, 743-816.	10.7	29
40	ENO Reconstruction and ENO Interpolation Are Stable. Foundations of Computational Mathematics, 2013, 13, 139-159.	2.5	48
41	Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8, 969-984.	1.1	21
42	Entropy Conservative and Entropy Stable Schemes for Nonconservative Hyperbolic Systems. SIAM Journal on Numerical Analysis, 2013, 51, 1371-1391.	2.3	34
43	Multi-level Monte Carlo Finite Volume Methods for Uncertainty Quantification in Nonlinear Systems of Balance Laws. Lecture Notes in Computational Science and Engineering, 2013, , 225-294.	0.3	11
44	Higher-order finite difference schemes for the magnetic induction equations with resistivity. IMA Journal of Numerical Analysis, 2012, 32, 1173-1193.	2.9	11
45	Arbitrarily High-order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws. SIAM Journal on Numerical Analysis, 2012, 50, 544-573.	2.3	204
46	Stable finite difference schemes for the magnetic induction equation with Hall effect. BIT Numerical Mathematics, 2012, 52, 905-932.	2.0	1
47	Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. Mathematics of Computation, 2012, 81, 1979-2018.	2.1	102
48	Multilevel Monte Carlo Finite Volume Methods for Shallow Water Equations with Uncertain Topography in Multi-dimensions. SIAM Journal of Scientific Computing, 2012, 34, B761-B784.	2.8	29
49	Entropy stable schemes for initial-boundary-value conservation laws. Zeitschrift Fur Angewandte Mathematik Und Physik, 2012, 63, 985-1003.	1.4	16
50	Accurate numerical discretizations of non-conservative hyperbolic systems. ESAIM: Mathematical Modelling and Numerical Analysis, 2012, 46, 187-206.	1.9	25
51	Entropy Stable Numerical Schemes for Two-Fluid Plasma Equations. Journal of Scientific Computing, 2012, 52, 401-425.	2.3	31
52	Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions. Journal of Computational Physics, 2012, 231, 3365-3388.	3.8	78
53	Static Load Balancing for Multi-level Monte Carlo Finite Volume Solvers. Lecture Notes in Computer Science, 2012, , 245-254.	1.3	7
54	Robust Finite Volume Schemes for Simulating Waves in the Solar Atmosphere. Series in Contemporary Applied Mathematics, 2012, , 215-226.	0.8	0

SIDDHARTHA MISHRA

#	Article	IF	CITATIONS
55	Entropy Stable ENO Scheme. Series in Contemporary Applied Mathematics, 2012, , 12-27.	0.8	2
56	Approximate Riemann Solvers and Robust High-Order Finite Volume Schemes for Multi-Dimensional Ideal MHD Equations. Communications in Computational Physics, 2011, 9, 324-362.	1.7	29
57	SIMULATING WAVES IN THE UPPER SOLAR ATMOSPHERE WITH SURYA: A WELL-BALANCED HIGH-ORDER FINITE-VOLUME CODE. Astrophysical Journal, 2011, 732, 75.	4.5	12
58	Constraint Preserving Schemes Using Potential-Based Fluxes I. Multidimensional Transport Equations. Communications in Computational Physics, 2011, 9, 688-710.	1.7	11
59	Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. Journal of Computational Physics, 2011, 230, 5587-5609.	3.8	121
60	Convergence of an Engquist-Osher scheme for a multi-dimensional triangular system of conservation laws. Mathematics of Computation, 2010, 79, 71-71.	2.1	16
61	On stability of numerical schemes via frozen coefficients and the magnetic induction equations. BIT Numerical Mathematics, 2010, 50, 85-108.	2.0	31
62	On the upstream mobility scheme for two-phase flow in porous media. Computational Geosciences, 2010, 14, 105-124.	2.4	21
63	Energy Preserving and Energy Stable Schemes for the Shallow Water Equations. , 2009, , 93-139.		25
64	Higher order finite difference schemes for the magnetic induction equations. BIT Numerical Mathematics, 2009, 49, 375-395.	2.0	13
65	Shock Capturing Artificial Dissipation for High-Order Finite DifferenceÂSchemes. Journal of Scientific Computing, 2009, 39, 454-484.	2.3	12
66	Convergence of finite volume schemes for triangular systems of conservation laws. Numerische Mathematik, 2009, 111, 559-589.	1.9	14
67	Kinetic functions in magnetohydrodynamics with resistivity and Hall effect. Acta Mathematica Scientia, 2009, 29, 1684-1702.	1.0	4
68	Well-balanced schemes for conservation laws with source terms based on a local discontinuous flux formulation. Mathematics of Computation, 2009, 78, 55-55.	2.1	15
69	Semi-Godunov schemes for general triangular systems of conservation laws. Journal of Engineering Mathematics, 2008, 60, 337-349.	1.2	5
70	A large-time-stepping scheme for balance equations. Journal of Engineering Mathematics, 2008, 60, 351-363.	1.2	4
71	OPTIMAL ENTROPY SOLUTIONS FOR CONSERVATION LAWS WITH DISCONTINUOUS FLUX-FUNCTIONS. Journal of Hyperbolic Differential Equations, 2005, 02, 783-837.	0.5	119
72	On the approximation of rough functions with deep neural networks. SeMA Journal, 0, , .	2.0	1