Paul Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3671942/publications.pdf

Version: 2024-02-01

113	19,320 citations	54	106
papers		h-index	g-index
140	140	140	20761 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Circulating inflammatory cytokines and risk of five cancers: a Mendelian randomization analysis. BMC Medicine, 2022, 20, 3.	2.3	41
2	Insights into the role of immune cells in development and regeneration. Development (Cambridge), 2022, 149, .	1.2	O
3	Modulating the Inflammatory Response to Wounds and Cancer Through Infection. Frontiers in Cell and Developmental Biology, 2021, 9, 676193.	1.8	6
4	Live-imaging of endothelial Erk activity reveals dynamic and sequential signalling events during regenerative angiogenesis. ELife, $2021,10,10$	2.8	24
5	Macrophage regulation of angiogenesis in health and disease. Seminars in Cell and Developmental Biology, 2021, 119, 101-110.	2.3	34
6	Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish. Cardiovascular Research, 2020, 116, 1357-1371.	1.8	85
7	Cell migration by swimming: Drosophila adipocytes as a new in vivo model of adhesion-independent motility. Seminars in Cell and Developmental Biology, 2020, 100, 160-166.	2.3	2
8	The hallmarks of cancer are also the hallmarks of wound healing. Science Signaling, 2020, 13, .	1.6	102
9	The cell biology of inflammation: From common traits to remarkable immunological adaptations. Journal of Cell Biology, 2020, 219, .	2.3	32
10	Live imaging the foreign body response in zebrafish reveals how dampening inflammation reduces fibrosis. Journal of Cell Science, 2020, 133, .	1,2	26
11	Injury Activates a Dynamic Cytoprotective Network to Confer Stress Resilience and Drive Repair. Current Biology, 2019, 29, 3851-3862.e4.	1.8	22
12	Proteolytic and Opportunistic Breaching of the Basement Membrane Zone by Immune Cells during Tumor Initiation. Cell Reports, 2019, 27, 2837-2846.e4.	2.9	36
13	Technical Note: Error metrics for estimating the accuracy of needle/instrument placement during transperineal magnetic resonance/ultrasoundâ€guided prostate interventions. Medical Physics, 2018, 45, 1408-1414.	1.6	7
14	Fat Body Cells Are Motile and Actively Migrate to Wounds to Drive Repair and Prevent Infection. Developmental Cell, 2018, 44, 460-470.e3.	3.1	90
15	Host–Biomaterial Interactions in Zebrafish. ACS Biomaterials Science and Engineering, 2018, 4, 1233-1240.	2.6	16
16	Targeting <i>miRâ€223</i> in neutrophils enhances theÂclearance of <i>Staphylococcus aureus</i> in infectedAwounds. EMBO Molecular Medicine, 2018, 10, .	3.3	50
17	<i>Drosophila</i> immune cells extravasate from vessels to wounds using Tre1 GPCR and Rho signaling. Journal of Cell Biology, 2018, 217, 3045-3056.	2.3	21
18	Long-term In Vivo Tracking of Inflammatory Cell Dynamics Within Drosophila Pupae. Journal of Visualized Experiments, 2018, , .	0.2	19

#	Article	IF	Citations
19	Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO Journal, 2018, 37, .	3.5	183
20	Live imaging of collagen deposition during skin development and repair in a collagen I – GFP fusion transgenic zebrafish line. Developmental Biology, 2018, 441, 4-11.	0.9	43
21	Macrophage Functions in Tissue Patterning and Disease: New Insights from the Fly. Developmental Cell, 2017, 40, 221-233.	3.1	7 9
22	MiR-142 Is Required for Staphylococcus aureus Clearance at Skin Wound Sites via Small GTPase-Mediated Regulation of the Neutrophil Actin Cytoskeleton. Journal of Investigative Dermatology, 2017, 137, 931-940.	0.3	43
23	Inflammation and metabolism in tissue repair and regeneration. Science, 2017, 356, 1026-1030.	6.0	808
24	Myeloid Cells in Cutaneous Wound Repair., 2017,, 385-403.		0
25	Zebrafish as a Research Organism. , 2017, , 235-261.		3
26	The Impact of Wound Inflammation on Cancer Progression: Studies in Fish and Patients., 2017, , 183-199.		1
27	Corpse Engulfment Generates a Molecular Memory that Primes the Macrophage Inflammatory Response. Cell, 2016, 165, 1658-1671.	13.5	160
28	Wound repair: a showcase for cell plasticity and migration. Current Opinion in Cell Biology, 2016, 42, 29-37.	2.6	165
29	Accurate Reconstruction of Cell and Particle Tracks from 3D Live Imaging Data. Cell Systems, 2016, 3, 102-107.	2.9	8
30	Systems Analysis of the Dynamic Inflammatory Response to Tissue Damage Reveals Spatiotemporal Properties of the Wound Attractant Gradient. Current Biology, 2016, 26, 1975-1989.	1.8	48
31	Myeloid Cells in Cutaneous Wound Repair. Microbiology Spectrum, 2016, 4, .	1.2	12
32	The wound inflammatory response exacerbates growth of preâ€neoplastic cells and progression toÂcancer. EMBO Journal, 2015, 34, 2219-2236.	3.5	210
33	Ephrin-Bs Drive Junctional Downregulation and Actin Stress Fiber Disassembly to Enable Wound Re-epithelialization. Cell Reports, 2015, 13, 1380-1395.	2.9	60
34	Imaging innate immune responses at tumour initiation: new insights from fish and flies. Nature Reviews Cancer, 2015, 15, 556-562.	12.8	41
35	Wound repair and regeneration: Mechanisms, signaling, and translation. Science Translational Medicine, 2014, 6, 265sr6.	5.8	2,114
36	Recapitulation of morphogenetic cell shape changes enables wound re-epithelialisation. Development (Cambridge), 2014, 141, 1814-1820.	1.2	72

#	Article	IF	Citations
37	Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. DMM Disease Models and Mechanisms, 2014, 7, 1205-1213.	1.2	337
38	Reduced FOXO1 Expression Accelerates Skin Wound Healing and Attenuates Scarring. American Journal of Pathology, 2014, 184, 2465-2479.	1.9	58
39	Resolution Mediator Chemerin15 Reprograms the Wound Microenvironment to Promote Repair and Reduce Scarring. Current Biology, 2014, 24, 1406-1414.	1.8	53
40	Recapitulation of morphogenetic cell shape changes enables wound re-epithelialisation. Journal of Cell Science, 2014, 127, e1-e1.	1.2	0
41	Inflammation drives wound hyperpigmentation in zebrafish by recruiting pigment cells to sites of tissue damage. DMM Disease Models and Mechanisms, 2013, 6, 508-15.	1.2	54
42	Calcium Flashes Orchestrate the Wound Inflammatory Response through DUOX Activation and Hydrogen Peroxide Release. Current Biology, 2013, 23, 424-429.	1.8	278
43	Thymosin \hat{l}^2 4-sulfoxide attenuates inflammatory cell infiltration and promotes cardiac wound healing. Nature Communications, 2013, 4, 2081.	5.8	66
44	Modelling human wiskott aldrich syndrome protein mutants in zebrafish larvae using live in vivo imaging. Journal of Cell Science, 2013, 126, 4077-84.	1.2	28
45	Embryonic Clutch Control. Science, 2012, 335, 1181-1182.	6.0	3
46	Knockdown of Osteopontin Reduces the Inflammatory Response and Subsequent Size of Postsurgical Adhesions in a Murine Model. American Journal of Pathology, 2012, 181, 1165-1172.	1.9	12
47	Live Imaging of Tumor Initiation in Zebrafish Larvae Reveals a Trophic Role for Leukocyte-Derived PGE2. Current Biology, 2012, 22, 1253-1259.	1.8	109
48	A Syndecan-4 Hair Trigger Initiates Wound Healing through Caveolin- and RhoG-Regulated Integrin Endocytosis. Developmental Cell, 2012, 23, 1081-1082.	3.1	3
49	A Syndecan-4 Hair Trigger Initiates Wound Healing through Caveolin- and RhoG-Regulated Integrin Endocytosis. Developmental Cell, 2011, 21, 681-693.	3.1	115
50	Microtubule remodelling is required for the front–rear polarity switch during contact inhibition of locomotion. Journal of Cell Science, 2011, 124, 2642-2653.	1.2	54
51	†White wave' analysis of epithelial scratch wound healing reveals how cells mobilise back from the leading edge in a myosin-II-dependent fashion. Journal of Cell Science, 2011, 124, 1017-1021.	1.2	62
52	Swatting flies: modelling wound healing and inflammation in <i>Drosophila</i> . DMM Disease Models and Mechanisms, 2011, 4, 569-574.	1.2	91
53	â€White wave' analysis of epithelial scratch wound healing reveals how cells mobilise back from the leading edge in a myosin-ll-dependent fashion. Development (Cambridge), 2011, 138, e1-e1.	1.2	0
54	Prioritization of Competing Damage and Developmental Signals by Migrating Macrophages in the Drosophila Embryo. Current Biology, 2010, 20, 464-470.	1.8	176

#	Article	IF	CITATIONS
55	Live Imaging of Innate Immune Cell Sensing of Transformed Cells in Zebrafish Larvae: Parallels between Tumor Initiation and Wound Inflammation. PLoS Biology, 2010, 8, e1000562.	2.6	185
56	Clasp-mediated microtubule bundling regulates persistent motility and contact repulsion in <i>Drosophila</i> macrophages in vivo. Journal of Cell Biology, 2010, 189, 681-689.	2.3	111
57	Fascin is required for blood cell migration during <i>Drosophila</i> embryogenesis. Development (Cambridge), 2009, 136, 2557-2565.	1.2	68
58	Epigenetic reprogramming during wound healing: loss of polycombâ€mediated silencing may enable upregulation of repair genes. EMBO Reports, 2009, 10, 881-886.	2.0	162
59	Wound healing in zebrafish. Nature, 2009, 459, 921-923.	13.7	39
60	Wound repair at a glance. Journal of Cell Science, 2009, 122, 3209-3213.	1.2	613
61	Morphoregulation by acetylcholinesterase in fibroblasts and astrocytes. Journal of Cellular Physiology, 2008, 215, 82-100.	2.0	33
62	Gene induction following wounding of wildâ€type versus macrophageâ€deficient <i>Drosophila</i> embryos. EMBO Reports, 2008, 9, 465-471.	2.0	49
63	Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. Journal of Experimental Medicine, 2008, 205, 43-51.	4.2	262
64	Analysis of WASp function during the wound inflammatory response – live-imaging studies in zebrafish larvae. Journal of Cell Science, 2008, 121, 3196-3206.	1.2	73
65	Dynamic analysis of filopodial interactions during the zippering phase of <i>Drosophila </i> dorsal closure. Development (Cambridge), 2008, 135, 621-626.	1.2	167
66	Culture of Postimplantation Mouse Embryos. Methods in Molecular Biology, 2008, 461, 7-22.	0.4	7
67	Wound healing and inflammation studies in genetically tractable organisms. International Congress Series, 2007, 1302, 3-16.	0.2	2
68	The Inflammation–Fibrosis Link? A Jekyll and Hyde Role for Blood Cells during Wound Repair. Journal of Investigative Dermatology, 2007, 127, 1009-1017.	0.3	210
69	Compartmentalisation of Rho regulators directs cell invagination during tissue morphogenesis. Development (Cambridge), 2006, 133, 4257-4267.	1.2	96
70	Embryo Morphogenesis and the Role of the Actin Cytoskeleton. Advances in Molecular and Cell Biology, 2006, 37, 251-283.	0.1	0
71	Imaging macrophage chemotaxis in vivo: Studies of microtubule function in zebrafish wound inflammation. Cytoskeleton, 2006, 63, 415-422.	4.4	171
72	Acute downregulation of connexin43 at wound sites leads to a reduced inflammatory response, enhanced keratinocyte proliferation and wound fibroblast migration. Journal of Cell Science, 2006, 119, 5193-5203.	1.2	242

#	Article	IF	Citations
73	Cell Biology: Master Regulators of Sealing and Healing. Current Biology, 2005, 15, R425-R427.	1.8	39
74	Inflammatory cells during wound repair: the good, the bad and the ugly. Trends in Cell Biology, 2005, 15, 599-607.	3.6	1,141
75	Enhanced expression of the mannose receptor by endothelial cells of the liver and spleen microvascular beds in the macrophage-deficient PU.1 null mouse. Histochemistry and Cell Biology, 2005, 123, 365-376.	0.8	16
76	Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration. Journal of Cell Biology, 2005, 168, 567-573.	2.3	283
77	The small GTPase Rac plays multiple roles in epithelial sheet fusionâ€"dynamic studies of Drosophila dorsal closure. Developmental Biology, 2005, 282, 163-173.	0.9	76
78	The role of actin cables in directing the morphogenesis of the pharyngeal pouches. Development (Cambridge), 2004, 131, 593-599.	1.2	33
79	Wound healing and inflammation: embryos reveal the way to perfect repair. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 777-784.	1.8	249
80	Parallels between tissue repair and embryo morphogenesis. Development (Cambridge), 2004, 131, 3021-3034.	1.2	501
81	Wound healing and inflammation genes revealed by array analysis of 'macrophageless' PU.1 null mice. Genome Biology, 2004, 6, R5.	13.9	122
82	Morphogenesis: shroom in to close the neural tube. Current Biology, 2004, 14, R150-1.	1.8	2
83	Wound Healing in the PU.1 Null Mouse—Tissue Repair Is Not Dependent on Inflammatory Cells. Current Biology, 2003, 13, 1122-1128.	1.8	459
84	Targeting Connexin43 Expression Accelerates the Rate of Wound Repair. Current Biology, 2003, 13, 1697-1703.	1.8	263
85	Role for keratins 6 and 17 during wound closure in embryonic mouse skin. Developmental Dynamics, 2003, 226, 356-365.	0.8	97
86	c-Jun Regulates Eyelid Closure and Skin Tumor Development through EGFR Signaling. Developmental Cell, 2003, 4, 879-889.	3.1	248
87	DEVELOPMENT: Enhanced: May the Force Be with You. Science, 2003, 300, 63-65.	6.0	4
88	Dynamic Analysis of Dorsal Closure in Drosophila. Developmental Cell, 2002, 3, 9-19.	3.1	221
89	Structures in focus—filopodia. International Journal of Biochemistry and Cell Biology, 2002, 34, 726-730.	1.2	144
90	Dynamic Analysis of Actin Cable Function during Drosophila Dorsal Closure. Current Biology, 2002, 12, 1245-1250.	1.8	191

#	Article	IF	CITATIONS
91	Epithelial fusions in the embryo. Current Opinion in Cell Biology, 2002, 14, 569-574.	2.6	57
92	Immediate early geneskrox-24 andkrox-20 are rapidly up-regulated after wounding in the embryonic and adult mouse. Developmental Dynamics, 2002, 223, 371-378.	0.8	53
93	Wound healing recapitulates morphogenesis in Drosophila embryos. Nature Cell Biology, 2002, 4, 907-912.	4.6	388
94	A Reciprocal Relationship between Cutaneous Nerves and Repairing Skin Wounds in the Developing Chick Embryo. Developmental Biology, 2001, 238, 27-39.	0.9	55
95	Mechanisms of epithelial fusion and repair. Nature Cell Biology, 2001, 3, E117-E123.	4.6	350
96	Morphogenesis: Unravelling the cell biology of hole closure. Current Biology, 2001, 11, R705-R707.	1.8	26
97	Conserved mechanisms of repair: from damaged single cells to wounds in multicellular tissues. BioEssays, 2000, 22, 911-919.	1.2	46
98	Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Current Biology, 2000, 10, 1420-1426.	1.8	311
99	Conserved mechanisms of repair: from damaged single cells to wounds in multicellular tissues. BioEssays, 2000, 22, 911-919.	1.2	2
100	Culture of Postimplantation Mouse Embryos. , 1999, 97, 7-22.		10
100	Culture of Postimplantation Mouse Embryos. , 1999, 97, 7-22. Parallels between wound repair and morphogenesis in the embryo. Seminars in Cell and Developmental Biology, 1999, 10, 395-404.	2.3	10
	Parallels between wound repair and morphogenesis in the embryo. Seminars in Cell and	2.3	
101	Parallels between wound repair and morphogenesis in the embryo. Seminars in Cell and Developmental Biology, 1999, 10, 395-404. Growth factors and wound healing. Growth Factors and Cytokines in Health and Disease, 1997, 3,		25
101	Parallels between wound repair and morphogenesis in the embryo. Seminars in Cell and Developmental Biology, 1999, 10, 395-404. Growth factors and wound healing. Growth Factors and Cytokines in Health and Disease, 1997, 3, 499-528.	0.2	25 O
101 102 103	Parallels between wound repair and morphogenesis in the embryo. Seminars in Cell and Developmental Biology, 1999, 10, 395-404. Growth factors and wound healing. Growth Factors and Cytokines in Health and Disease, 1997, 3, 499-528. Wound Healing-Aiming for Perfect Skin Regeneration. Science, 1997, 276, 75-81. The role of macrophages in clearing programmed cell death in the developing kidney. Anatomy and	6.0	25 O 4,155
101 102 103	Parallels between wound repair and morphogenesis in the embryo. Seminars in Cell and Developmental Biology, 1999, 10, 395-404. Growth factors and wound healing. Growth Factors and Cytokines in Health and Disease, 1997, 3, 499-528. Wound Healing-Aiming for Perfect Skin Regeneration. Science, 1997, 276, 75-81. The role of macrophages in clearing programmed cell death in the developing kidney. Anatomy and Embryology, 1996, 194, 341-8. 6 Mechanisms of Wound Healing in the Embryo and Fetus. Current Topics in Developmental Biology,	0.2 6.0 1.5	25 0 4,155 23
101 102 103 104	Parallels between wound repair and morphogenesis in the embryo. Seminars in Cell and Developmental Biology, 1999, 10, 395-404. Growth factors and wound healing. Growth Factors and Cytokines in Health and Disease, 1997, 3, 499-528. Wound Healing-Aiming for Perfect Skin Regeneration. Science, 1997, 276, 75-81. The role of macrophages in clearing programmed cell death in the developing kidney. Anatomy and Embryology, 1996, 194, 341-8. 6 Mechanisms of Wound Healing in the Embryo and Fetus. Current Topics in Developmental Biology, 1996, 32, 175-203.	0.2 6.0 1.5	25 0 4,155 23

Paul Martin

#	Article	IF	CITATIONS
109	Rapid induction and clearance of $TGF\hat{l}^21$ is an early response to wounding in the mouse embryo. Genesis, 1993, 14, 225-238.	3.1	113
110	A study of wound healing in the E11.5 mouse embryo by light and electron microscopy. Tissue and Cell, 1993, 25, 173-181.	1.0	24
111	Growth factors and cutaneous wound repair. Progress in Growth Factor Research, 1992, 4, 25-44.	1.7	218
112	An early molecular component of the wound healing response in rat embryosâ€"induction of c-fos protein in cells at the epidermal wound margin. Mechanisms of Development, 1992, 38, 209-215.	1.7	79
113	Actin cables and epidermal movement in embryonic wound healing. Nature, 1992, 360, 179-183.	13.7	457