John A Stamatoyannopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3671519/publications.pdf

Version: 2024-02-01

50 papers 28,768 citations

39 h-index 197818 49 g-index

56 all docs 56
docs citations

56 times ranked

40709 citing authors

#	Article	IF	CITATIONS
1	Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science, 2009, 326, 289-293.	12.6	7,170
2	Integrative analysis of 111 reference human epigenomes. Nature, 2015, 518, 317-330.	27.8	5,653
3	Systematic Localization of Common Disease-Associated Variation in Regulatory DNA. Science, 2012, 337, 1190-1195.	12.6	3,129
4	The accessible chromatin landscape of the human genome. Nature, 2012, 489, 75-82.	27.8	2,434
5	Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature, 2020, 583, 699-710.	27.8	1,252
6	Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nature Genetics, 2011, 43, 264-268.	21.4	854
7	BEDOPS: high-performance genomic feature operations. Bioinformatics, 2012, 28, 1919-1920.	4.1	840
8	An expansive human regulatory lexicon encoded in transcription factor footprints. Nature, 2012, 489, 83-90.	27.8	715
9	Defining functional DNA elements in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6131-6138.	7.1	635
10	Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nature Methods, 2009, 6, 283-289.	19.0	533
11	Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature, 2015, 518, 360-364.	27.8	491
12	Circuitry and Dynamics of Human Transcription Factor Regulatory Networks. Cell, 2012, 150, 1274-1286.	28.9	451
13	Human mutation rate associated with DNA replication timing. Nature Genetics, 2009, 41, 393-395.	21.4	371
14	Native Elongating Transcript Sequencing Reveals Human Transcriptional Activity at Nucleotide Resolution. Cell, 2015, 161, 541-554.	28.9	342
15	Developmental Fate and Cellular Maturity Encoded in Human Regulatory DNA Landscapes. Cell, 2013, 154, 888-903.	28.9	329
16	Dynamic Exchange at Regulatory Elements during Chromatin Remodeling Underlies Assisted Loading Mechanism. Cell, 2011, 146, 544-554.	28.9	282
17	Role of DNA Methylation in Modulating Transcription Factor Occupancy. Cell Reports, 2015, 12, 1184-1195.	6.4	249
18	Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science, 2014, 346, 1007-1012.	12.6	244

#	Article	IF	Citations
19	Global reference mapping of human transcription factor footprints. Nature, 2020, 583, 729-736.	27.8	228
20	Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature, 2014, 515, 365-370.	27.8	211
21	Index and biological spectrum of human DNase I hypersensitive sites. Nature, 2020, 584, 244-251.	27.8	207
22	Genetic origins of the Minoans and Mycenaeans. Nature, 2017, 548, 214-218.	27.8	203
23	Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo. Nature Genetics, 2015, 47, 1393-1401.	21.4	202
24	Probing DNA shape and methylation state on a genomic scale with DNase I. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6376-6381.	7.1	151
25	De novo design of protein logic gates. Science, 2020, 368, 78-84.	12.6	151
26	Discovery of functional noncoding elements by digital analysis of chromatin structure. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16837-16842.	7.1	135
27	Functional footprinting of regulatory DNA. Nature Methods, 2015, 12, 927-930.	19.0	123
28	Perspectives on ENCODE. Nature, 2020, 583, 693-698.	27.8	123
29	Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair. Nature Biotechnology, 2014, 32, 71-75.	17.5	120
30	Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science, 2020, 368, 1449-1454.	12.6	106
31	Personal and population genomics of human regulatory variation. Genome Research, 2012, 22, 1689-1697.	5.5	98
32	Genomic discovery of potent chromatin insulators for human gene therapy. Nature Biotechnology, 2015, 33, 198-203.	17.5	98
33	Genomic footprinting. Nature Methods, 2016, 13, 213-221.	19.0	97
34	Genomeâ€Scale Mapping of DNase I Hypersensitivity. Current Protocols in Molecular Biology, 2013, 103, Unit 21.27.	2.9	82
35	APOBEC-Induced Cancer Mutations Are Uniquely Enriched in Early-Replicating, Gene-Dense, and Active Chromatin Regions. Cell Reports, 2015, 13, 1103-1109.	6.4	80
36	Maritime route of colonization of Europe. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9211-9216.	7.1	71

#	Article	IF	CITATIONS
37	Widespread Site-Dependent Buffering of Human Regulatory Polymorphism. PLoS Genetics, 2012, 8, e1002599.	3.5	65
38	2p15-p16.1 microdeletions encompassing and proximal to BCL11A are associated with elevated HbF in addition to neurologic impairment. Blood, 2015, 126, 89-93.	1.4	62
39	Coupling transcription factor occupancy to nucleosome architecture with DNase-FLASH. Nature Methods, 2014, 11, 66-72.	19.0	58
40	Methylated Cytosines Mutate to Transcription Factor Binding Sites that Drive Tetrapod Evolution. Genome Biology and Evolution, 2015, 7, 3155-3169.	2.5	20
41	Genetics and Genomics of Longitudinal Lung Function Patterns in Individuals with Asthma. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1465-1474.	5.6	20
42	Parent-of-Origin Effects of the APOB Gene on Adiposity in Young Adults. PLoS Genetics, 2015, 11, e1005573.	3.5	16
43	Tissue context determines the penetrance of regulatory DNA variation. Nature Communications, 2021, 12, 2850.	12.8	13
44	Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation. Nature Communications, 2021, 12, 6790.	12.8	6
45	Differences in nanoscale organization of regulatory active and inactive human chromatin. Biophysical Journal, 2022, 121, 977-990.	0.5	6
46	Myasthenia gravis genome-wide association study implicates AGRN as a risk locus. Journal of Medical Genetics, 2022, 59, 801-809.	3.2	5
47	Taking Stock of Regulatory Variation. Cell Systems, 2015, 1, 18-21.	6.2	4
48	Genetic history of the population of Crete. Annals of Human Genetics, 2019, 83, 373-388.	0.8	2
49	Crossâ€Platform DNA Encoding for Singleâ€Cell Imaging of Gene Expression. Angewandte Chemie, 2016, 128, 9121-9124.	2.0	0
50	Inaccessible LCG Promoters Act as Safeguards to Restrict T Cell Development to Appropriate Notch Signaling Environments. Stem Cell Reports, 2021, 16, 717-726.	4.8	0