Yanan Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3671384/publications.pdf Version: 2024-02-01

		430874	330143
39	1,464	18	37
papers	citations	h-index	g-index
41 all docs	41 docs citations	41 times ranked	1967 citing authors

ΥλΝΑΝ ΖΗΛΟ

#	Article	IF	CITATIONS
1	Histone Acetylation Regulator Gcn5 Mediates Drug Resistance and Virulence of Candida glabrata. Microbiology Spectrum, 2022, 10, .	3.0	8
2	A novel diagnostic test to screen SARS-CoV-2 variants containing E484K and N501Y mutations. Emerging Microbes and Infections, 2021, 10, 994-997.	6.5	15
3	Diagnosis, clinical characteristics, and outcomes of COVID-19 patients from a large healthcare system in northern New Jersey. Scientific Reports, 2021, 11, 4389.	3.3	11
4	Therapeutic Potential of Fosmanogepix (APX001) for Intra-abdominal Candidiasis: from Lesion Penetration to Efficacy in a Mouse Model. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	16
5	Development of novel immunoprophylactic agents against multidrug resistant Gram-negative bacterial infections Antimicrobial Agents and Chemotherapy, 2021, 65, e0098521.	3.2	1
6	Postvaccination SARS-COV-2 among Health Care Workers in New Jersey: A Genomic Epidemiological Study. Microbiology Spectrum, 2021, 9, e0188221.	3.0	5
7	Differential Regulation of Echinocandin Targets Fks1 and Fks2 in Candida glabrata by the Post-Transcriptional Regulator Ssd1. Journal of Fungi (Basel, Switzerland), 2020, 6, 143.	3.5	11
8	Penetration of Ibrexafungerp (Formerly SCY-078) at the Site of Infection in an Intra-abdominal Candidiasis Mouse Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	20
9	Review of the Novel Echinocandin Antifungal Rezafungin: Animal Studies and Clinical Data. Journal of Fungi (Basel, Switzerland), 2020, 6, 192.	3.5	25
10	Novel <i>FKS1</i> and <i>FKS2</i> modifications in a high-level echinocandin resistant clinical isolate of <i>Candida glabrata</i> . Emerging Microbes and Infections, 2019, 8, 1619-1625.	6.5	29
11	Tissue Distribution and Penetration of Isavuconazole at the Site of Infection in Experimental Invasive Aspergillosis in Mice with Underlying Chronic Granulomatous Disease. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	16
12	Beyond tissue concentrations: antifungal penetration at the site of infection. Medical Mycology, 2019, 57, S161-S167.	0.7	9
13	Rapid Detection of ERG11 -Associated Azole Resistance and FKS -Associated Echinocandin Resistance in Candida auris. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	49
14	Applying host disease status biomarkers to therapeutic response monitoring in invasive aspergillosis patients. Medical Mycology, 2019, 57, 38-44.	0.7	8
15	A novel, tomographic imaging probe for rapid diagnosis of fungal keratitis. Medical Mycology, 2018, 56, 796-802.	0.7	12
16	Understanding Echinocandin Resistance in the Emerging Pathogen Candida auris. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	165
17	Profiling of PDR1 and MSH2 in Candida glabrata Bloodstream Isolates from a Multicenter Study in China. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	30
18	A Novel, Rapid, and Low-Volume Assay for Therapeutic Drug Monitoring of Posaconazole and Other Long-Chain Azole-Class Antifungal Drugs. MSphere, 2018, 3, .	2.9	6

Yanan Zhao

#	Article	IF	CITATIONS
19	Significantly Improved Pharmacokinetics Enhances <i>In Vivo</i> Efficacy of APX001 against Echinocandin- and Multidrug-Resistant Candida Isolates in a Mouse Model of Invasive Candidiasis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	32
20	Rapid and Accurate Molecular Identification of the Emerging Multidrug-Resistant Pathogen Candida auris. Journal of Clinical Microbiology, 2017, 55, 2445-2452.	3.9	140
21	The Gastrointestinal Tract Is a Major Source of Echinocandin Drug Resistance in a Murine Model of Candida glabrata Colonization and Systemic Dissemination. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	38
22	Unraveling Drug Penetration of Echinocandin Antifungals at the Site of Infection in an Intra-abdominal Abscess Model. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	73
23	An Aptamer-Based Biosensor for the Azole Class of Antifungal Drugs. MSphere, 2017, 2, .	2.9	18
24	Direct Molecular Diagnosis of Aspergillosis and CYP51A Profiling from Respiratory Samples of French Patients. Frontiers in Microbiology, 2016, 7, 1164.	3.5	21
25	CD101: a novel longâ€acting echinocandin. Cellular Microbiology, 2016, 18, 1308-1316.	2.1	66
26	Rapid Detection of <i>FKS</i> -Associated Echinocandin Resistance in Candida glabrata. Antimicrobial Agents and Chemotherapy, 2016, 60, 6573-6577.	3.2	53
27	Biosynthesis of cell wall mannan in the conidium and the mycelium of <i>Aspergillusfumigatus</i> . Cellular Microbiology, 2016, 18, 1881-1891.	2.1	46
28	Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nature Communications, 2016, 7, 11128.	12.8	227
29	Blood <i>Aspergillus</i> RNA is a promising alternative biomarker for invasive aspergillosis. Medical Mycology, 2016, 54, 801-807.	0.7	9
30	Carbohydrate-derived fulvic acid is a highly promising topical agent to enhance healing of wounds infected with drug-resistant pathogens. Journal of Trauma and Acute Care Surgery, 2015, 79, S121-S129.	2.1	18
31	Update on Antifungal Drug Resistance. Current Clinical Microbiology Reports, 2015, 2, 84-95.	3.4	130
32	Reply to "Detection of Multiple Fungal Species in Blood Samples by Real-Time PCR: an Interpretative Challenge― Journal of Clinical Microbiology, 2014, 52, 3517-3517.	3.9	0
33	Reply to "Not Over Yet: Fungal Infections following Methyl Prednisolone Injections Smoulder On― Journal of Clinical Microbiology, 2014, 52, 3508-3508.	3.9	0
34	Methylprednisolone Enhances the Growth of Exserohilum rostratum In Vitro, Attenuates Spontaneous Apoptosis, and Increases Mortality Rates in Immunocompetent Drosophila Flies. Journal of Infectious Diseases, 2014, 210, 1471-1475.	4.0	10
35	Host Biomarkers of Invasive Pulmonary Aspergillosis To Monitor Therapeutic Response. Antimicrobial Agents and Chemotherapy, 2014, 58, 3373-3378.	3.2	18
36	Fungal DNA Detected in Blood Samples of Patients Who Received Contaminated Methylprednisolone Injections Reveals Increased Complexity of Causative Agents. Journal of Clinical Microbiology, 2014, 52, 2212-2215.	3.9	10

#	Article	IF	CITATIONS
37	Expression Turnover Profiling To Monitor the Antifungal Activities of Amphotericin B, Voriconazole, and Micafungin against Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2012, 56, 2770-2772.	3.2	8
38	Detection of <i>Aspergillus fumigatus</i> in a Rat Model of Invasive Pulmonary Aspergillosis by Real-Time Nucleic Acid Sequence-Based Amplification. Journal of Clinical Microbiology, 2010, 48, 1378-1383.	3.9	42
39	Rapid Real-Time Nucleic Acid Sequence-Based Amplification-Molecular Beacon Platform To Detect Fungal and Bacterial Bloodstream Infections. Journal of Clinical Microbiology, 2009, 47, 2067-2078.	3.9	67