
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3671308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Blood-brain barrier delivery for lysosomal storage disorders with IgG-lysosomal enzyme fusion proteins. Advanced Drug Delivery Reviews, 2022, 184, 114234.	13.7	21
2	Kinetics of Blood–Brain Barrier Transport of Monoclonal Antibodies Targeting the Insulin Receptor and the Transferrin Receptor. Pharmaceuticals, 2022, 15, 3.	3.8	20
3	A Historical Review of Brain Drug Delivery. Pharmaceutics, 2022, 14, 1283.	4.5	65
4	Mathematical Models of Blood-Brain Barrier Transport of Monoclonal Antibodies Targeting the Transferrin Receptor and the Insulin Receptor. Pharmaceuticals, 2021, 14, 535.	3.8	24
5	Treatment of Alzheimer's Disease and Blood–Brain Barrier Drug Delivery. Pharmaceuticals, 2020, 13, 394.	3.8	92
6	Plasmid DNA gene therapy of the Niemann-Pick C1 mouse with transferrin receptor-targeted Trojan horse liposomes. Scientific Reports, 2020, 10, 13334.	3.3	22
7	Acute and Chronic Dosing of a High-Affinity Rat/Mouse Chimeric Transferrin Receptor Antibody in Mice. Pharmaceutics, 2020, 12, 852.	4.5	12
8	The Isolated Brain Microvessel: A Versatile Experimental Model of the Blood-Brain Barrier. Frontiers in Physiology, 2020, 11, 398.	2.8	31
9	Eliminating Fc N-Linked Glycosylation and Its Impact on Dosing Consideration for a Transferrin Receptor Antibody-Erythropoietin Fusion Protein in Mice. Molecular Pharmaceutics, 2020, 17, 2831-2839.	4.6	4
10	Lyoprotectant Optimization for the Freeze-Drying of Receptor-Targeted Trojan Horse Liposomes for Plasmid DNA Delivery. Molecular Pharmaceutics, 2020, 17, 2165-2174.	4.6	16
11	Brain Delivery of Nanomedicines: Trojan Horse Liposomes for Plasmid DNA Gene Therapy of the Brain. Frontiers in Medical Technology, 2020, 2, 602236.	2.5	20
12	Plasma Pharmacokinetics of High-Affinity Transferrin Receptor Antibody-Erythropoietin Fusion Protein is a Function of Effector Attenuation in Mice. Molecular Pharmaceutics, 2019, 16, 3534-3543.	4.6	17
13	Alzheimer's disease: future drug development and the blood-brain barrier. Expert Opinion on Investigational Drugs, 2019, 28, 569-572.	4.1	19
14	Platform technology for treatment of the brain in lysosomal disorders: Application to Tay-Sachs disease. Molecular Genetics and Metabolism, 2019, 126, S32.	1.1	0
15	Preclinical studies of a brain penetrating IgG Trojan horse-arylsulfatase fusion protein in the metachromatic leukodystrophy mouse. Molecular Genetics and Metabolism, 2019, 126, S77.	1.1	5
16	Platform technology for treatment of the brain in lysosomal diseases: Application to NCL1 Batten disease. Molecular Genetics and Metabolism, 2019, 126, S114-S115.	1.1	0
17	Platform technology for treatment of the brain in lysosomal disorders: Application to Niemann-Pick disease type A. Molecular Genetics and Metabolism, 2019, 126, S95-S96.	1.1	1
18	Hematologic safety of chronic brainâ€penetrating erythropoietin dosing in APP/PS1 mice. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 627-636.	3.7	13

#	Article	IF	CITATIONS
19	Bi-functional IgG-lysosomal enzyme fusion proteins for brain drug delivery. Scientific Reports, 2019, 9, 18632.	3.3	18
20	Blood-Brain Barrier and Delivery of Protein and Gene Therapeutics to Brain. Frontiers in Aging Neuroscience, 2019, 11, 373.	3.4	220
21	Plasma Pharmacokinetics of Valanafusp Alpha, a Human Insulin Receptor Antibody-Iduronidase Fusion Protein, in Patients with Mucopolysaccharidosis Type I. BioDrugs, 2018, 32, 169-176.	4.6	34
22	Safety and clinical efficacy of AGT-181, a brain penetrating human insulin receptor antibody-iduronidase fusion protein, in a 26-week study with pediatric patients with mucopolysaccharidosis type I. Molecular Genetics and Metabolism, 2018, 123, S54.	1.1	2
23	Reduction in Brain Heparan Sulfate with Systemic Administration of an IgG Trojan Horse–Sulfamidase Fusion Protein in the Mucopolysaccharidosis Type IIIA Mouse. Molecular Pharmaceutics, 2018, 15, 602-608.	4.6	31
24	P3â€057: THERAPEUTIC EFFECTS OF A BRAIN PENETRATING BISPECIFIC ERYTHROPOIETINâ€TRANSFERRIN RECEP ANTIBODY FUSION PROTEIN IN THE APP/PS1 MOUSE MODEL OF ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1086.	TOR 0.8	1
25	Brain Penetrating Bifunctional Erythropoietin–Transferrin Receptor Antibody Fusion Protein for Alzheimer's Disease. Molecular Pharmaceutics, 2018, 15, 4963-4973.	4.6	42
26	Blood-Brain Barrier Transport, Plasma Pharmacokinetics, and Neuropathology Following Chronic Treatment of the Rhesus Monkey with a Brain Penetrating Humanized Monoclonal Antibody Against the Human Transferrin Receptor. Molecular Pharmaceutics, 2018, 15, 5207-5216.	4.6	46
27	Platform technology for treatment of the brain in lysosomal disorders. Molecular Genetics and Metabolism, 2018, 123, S77.	1.1	0
28	Neurocognitive and somatic stabilization in pediatric patients with severe Mucopolysaccharidosis Type I after 52 weeks of intravenous brain-penetrating insulin receptor antibody-iduronidase fusion protein (valanafusp alpha): an open label phase 1-2 trial. Orphanet Journal of Rare Diseases, 2018, 13, 110.	2.7	104
29	Brain and Organ Uptake in the Rhesus Monkey in Vivo of Recombinant Iduronidase Compared to an Insulin Receptor Antibody–Iduronidase Fusion Protein. Molecular Pharmaceutics, 2017, 14, 1271-1277.	4.6	64
30	Blood–Brain Barrier Penetrating Biologic TNF-α Inhibitor for Alzheimer's Disease. Molecular Pharmaceutics, 2017, 14, 2340-2349.	4.6	75
31	Delivery of Biologics Across the Blood–Brain Barrier with Molecular Trojan Horse Technology. BioDrugs, 2017, 31, 503-519.	4.6	121
32	[O4–06–04]: PROTECTIVE EFFECTS OF A BRAINâ€PENETRATING BIOLOGIC TNFâ€ALPHA INHIBITOR IN A MO MODEL OF ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P1242.	USE 0.8	0
33	CSF, blood-brain barrier, and brain drug delivery. Expert Opinion on Drug Delivery, 2016, 13, 963-975.	5.0	356
34	Re-engineering therapeutic antibodies for Alzheimer's disease as blood-brain barrier penetrating bi-specific antibodies. Expert Opinion on Biological Therapy, 2016, 16, 1455-1468.	3.1	49
35	Very High Plasma Concentrations of a Monoclonal Antibody against the Human Insulin Receptor Are Produced by Subcutaneous Injection in the Rhesus Monkey. Molecular Pharmaceutics, 2016, 13, 3241-3246.	4.6	16
36	Insulin Receptor Antibodyâ^'α-N-Acetylglucosaminidase Fusion Protein Penetrates the Primate Blood–Brain Barrier and Reduces Glycosoaminoglycans in Sanfilippo Type B Fibroblasts. Molecular Pharmaceutics, 2016, 13, 1385-1392.	4.6	38

#	Article	IF	CITATIONS
37	Non-invasive gene targeting to the fetal brain after intravenous administration and transplacental transfer of plasmid DNA using PEGylated immunoliposomes. Journal of Drug Targeting, 2016, 24, 58-67.	4.4	15
38	S1-01-01: Blood-brain barrier from physiology to therapeutics. , 2015, 11, P114-P114.		0
39	Blood–brain barrier endogenous transporters as therapeutic targets: a new model for small molecule CNS drug discovery. Expert Opinion on Therapeutic Targets, 2015, 19, 1059-1072.	3.4	108
40	Targeted delivery of protein and gene medicines through the blood–brain barrier. Clinical Pharmacology and Therapeutics, 2015, 97, 347-361.	4.7	98
41	Blood–brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opinion on Drug Delivery, 2015, 12, 207-222.	5.0	127
42	Blood–Brain Barrier Targeting of Therapeutic Lysosomal Enzymes. AAPS Advances in the Pharmaceutical Sciences Series, 2015, , 41-62.	0.6	0
43	Insulin receptor antibodyâ€iduronate 2â€sulfatase fusion protein: Pharmacokinetics, antiâ€drug antibody, and safety pharmacology in Rhesus monkeys. Biotechnology and Bioengineering, 2014, 111, 2317-2325.	3.3	88
44	Insulin Receptor Antibody–Sulfamidase Fusion Protein Penetrates the Primate Blood–Brain Barrier and Reduces Glycosoaminoglycans in Sanfilippo Type A Cells. Molecular Pharmaceutics, 2014, 11, 2928-2934.	4.6	58
45	lgG-Enzyme Fusion Protein: Pharmacokinetics and Anti-Drug Antibody Response in Rhesus Monkeys. Bioconjugate Chemistry, 2013, 24, 97-104.	3.6	30
46	Blood-Brain Barrier Molecular Trojan Horse Enables Imaging of Brain Uptake of Radioiodinated Recombinant Protein in the Rhesus Monkey. Bioconjugate Chemistry, 2013, 24, 1741-1749.	3.6	59
47	Combination stroke therapy in the mouse with blood–brain barrier penetrating IgG–GDNF and IgG–TNF decoy receptor fusion proteins. Brain Research, 2013, 1507, 91-96.	2.2	28
48	Pharmacokinetics and brain uptake in the rhesus monkey of a fusion protein of arylsulfatase a and a monoclonal antibody against the human insulin receptor. Biotechnology and Bioengineering, 2013, 110, 1456-1465.	3.3	59
49	Disaggregation of Amyloid Plaque in Brain of Alzheimer's Disease Transgenic Mice with Daily Subcutaneous Administration of a Tetravalent Bispecific Antibody That Targets the Transferrin Receptor and the Abeta Amyloid Peptide. Molecular Pharmaceutics, 2013, 10, 3507-3513.	4.6	49
50	Pharmacokinetics and Brain Uptake of an IgG-TNF Decoy Receptor Fusion Protein Following Intravenous, Intraperitoneal, and Subcutaneous Administration in Mice. Molecular Pharmaceutics, 2013, 10, 1425-1431.	4.6	39
51	Brain-Penetrating IgG-Iduronate 2-Sulfatase Fusion Protein for the Mouse. Drug Metabolism and Disposition, 2012, 40, 329-335.	3.3	40
52	Selective plasma pharmacokinetics and brain uptake in the mouse of enzyme fusion proteins derived from species-specific receptor-targeted antibodies. Journal of Drug Targeting, 2012, 20, 715-719.	4.4	25
53	Glycemic Control and Chronic Dosing of Rhesus Monkeys with a Fusion Protein of Iduronidase and a Monoclonal Antibody Against the Human Insulin Receptor. Drug Metabolism and Disposition, 2012, 40, 2021-2025.	3.3	46
54	Imaging Amyloid Plaque in Alzheimer's Disease Brain with a Biotinylated Aβ Peptide Radiopharmaceutical Conjugated to an IgG-Avidin Fusion Protein. Bioconjugate Chemistry, 2012, 23, 1318-1321.	3.6	17

#	Article	IF	CITATIONS
55	Drug Transport across the Blood–Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1959-1972.	4.3	1,336
56	Reengineering Biopharmaceuticals for Targeted Delivery Across the Blood–Brain Barrier. Methods in Enzymology, 2012, 503, 269-292.	1.0	159
57	Brain Protection from Stroke with Intravenous TNF <i>α</i> Decoy Receptor-Trojan Horse Fusion Protein. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1933-1938.	4.3	88
58	Receptor-Mediated Abeta Amyloid Antibody Targeting to Alzheimer's Disease Mouse Brain. Molecular Pharmaceutics, 2011, 8, 280-285.	4.6	41
59	Delivery of a Peptide Radiopharmaceutical to Brain with an IgG-Avidin Fusion Protein. Bioconjugate Chemistry, 2011, 22, 1611-1618.	3.6	28
60	Reversal of Lysosomal Storage in Brain of Adult MPS-I Mice with Intravenous Trojan Horse-Iduronidase Fusion Protein. Molecular Pharmaceutics, 2011, 8, 1342-1350.	4.6	67
61	Drug transport in brain via the cerebrospinal fluid. Fluids and Barriers of the CNS, 2011, 8, 7.	5.0	231
62	Neuroprotection in stroke in the mouse with intravenous erythropoietin–Trojan horse fusion protein. Brain Research, 2011, 1369, 203-207.	2.2	31
63	Brain penetrating IgG-erythropoietin fusion protein is neuroprotective following intravenous treatment in Parkinson's disease in the mouse. Brain Research, 2011, 1382, 315-320.	2.2	35
64	CHO cell expression, longâ€ŧerm stability, and primate pharmacokinetics and brain uptake of an IgG–paroxonaseâ€1 fusion protein. Biotechnology and Bioengineering, 2011, 108, 186-196.	3.3	17
65	Expression in CHO cells and pharmacokinetics and brain uptake in the Rhesus monkey of an IgGâ€iduronateâ€2â€sulfatase fusion protein. Biotechnology and Bioengineering, 2011, 108, 1954-1964.	3.3	34
66	Neuroprotection with a Brain-Penetrating Biologic Tumor Necrosis Factor Inhibitor. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 618-623.	2.5	57
67	The Trojan Horse Liposome Technology for Nonviral Gene Transfer across the Blood-Brain Barrier. Journal of Drug Delivery, 2011, 2011, 1-12.	2.5	65
68	Chronic Dosing of Mice with a Transferrin Receptor Monoclonal Antibody-Glial-Derived Neurotrophic Factor Fusion Protein. Drug Metabolism and Disposition, 2011, 39, 1149-1154.	3.3	40
69	Brain-Penetrating Tumor Necrosis Factor Decoy Receptor in the Mouse. Drug Metabolism and Disposition, 2011, 39, 71-76.	3.3	36
70	Intravenous treatment of experimental Parkinson's disease in the mouse with an IgG-GDNF fusion protein that penetrates the blood–brain barrier. Brain Research, 2010, 1352, 208-213.	2.2	56
71	Neuroprotection in experimental stroke in the rat with an IgG–erythropoietin fusion protein. Brain Research, 2010, 1360, 193-197.	2.2	19
72	IgCâ€single chain Fv fusion protein therapeutic for alzheimer's disease: Expression in CHO cells and pharmacokinetics and brain delivery in the rhesus monkey. Biotechnology and Bioengineering, 2010, 105, 627-635.	3.3	38

#	Article	IF	CITATIONS
73	Selective targeting of a TNFR decoy receptor pharmaceutical to the primate brain as a receptor-specific lgC fusion protein. Journal of Biotechnology, 2010, 146, 84-91.	3.8	88
74	Monoclonal Antibody-Glial-Derived Neurotrophic Factor Fusion Protein Penetrates the Blood-Brain Barrier in the Mouse. Drug Metabolism and Disposition, 2010, 38, 566-572.	3.3	41
75	Biologic TNFα-inhibitors that cross the human blood-brain barrier. Bioengineered Bugs, 2010, 1, 233-236.	1.7	30
76	Genetic Engineering of a Bifunctional IgG Fusion Protein with Iduronate-2-Sulfatase. Bioconjugate Chemistry, 2010, 21, 151-156.	3.6	37
77	Biopharmaceutical drug targeting to the brain. Journal of Drug Targeting, 2010, 18, 157-167.	4.4	162
78	Pharmacokinetics and Brain Uptake of a Genetically Engineered Bifunctional Fusion Antibody Targeting the Mouse Transferrin Receptor. Molecular Pharmaceutics, 2010, 7, 237-244.	4.6	101
79	Re-Engineering Erythropoietin as an IgG Fusion Protein That Penetrates the Bloodâ `Brain Barrier in the Mouse. Molecular Pharmaceutics, 2010, 7, 2148-2155.	4.6	35
80	Preparation of Trojan Horse Liposomes (THLs) for Gene Transfer across the Blood-Brain Barrier. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5407.	0.3	29
81	Genetic engineering of IgG-glucuronidase fusion proteins. Journal of Drug Targeting, 2010, 18, 205-211.	4.4	31
82	Drug Targeting of Erythropoietin Across the Primate Blood-Brain Barrier with an IgG Molecular Trojan Horse. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 961-969.	2.5	79
83	Comparison of Blood-Brain Barrier Transport of Glial-Derived Neurotrophic Factor (GDNF) and an IgG-GDNF Fusion Protein in the Rhesus Monkey. Drug Metabolism and Disposition, 2009, 37, 2299-2304.	3.3	60
84	BLOOD-BRAIN BARRIER TRANSPORT OF NUTRIENTS. Nutrition Reviews, 2009, 44, 15-25.	5.8	47
85	Engineering and expression of a chimeric transferrin receptor monoclonal antibody for blood–brain barrier delivery in the mouse. Biotechnology and Bioengineering, 2009, 102, 1251-1258.	3.3	130
86	Near Complete Rescue of Experimental Parkinson's Disease with Intravenous, Non-viral GDNF Gene Therapy. Pharmaceutical Research, 2009, 26, 1059-1063.	3.5	64
87	Pharmacokinetics and Safety in Rhesus Monkeys of a Monoclonal Antibody-GDNF Fusion Protein for Targeted Blood-Brain Barrier Delivery. Pharmaceutical Research, 2009, 26, 2227-2236.	3.5	45
88	AGT-181: Expression in CHO cells and pharmacokinetics, safety, and plasma iduronidase enzyme activity in Rhesus monkeys. Journal of Biotechnology, 2009, 144, 135-141.	3.8	50
89	Tumor Necrosis Factor Receptor-IgG Fusion Protein for Targeted Drug Delivery across the Human Bloodâ^'Brain Barrier. Molecular Pharmaceutics, 2009, 6, 1536-1543.	4.6	26
90	Antibody-Mediated Targeting of siRNA via the Human Insulin Receptor Using Avidinâ^'Biotin Technology. Molecular Pharmaceutics, 2009, 6, 747-751.	4.6	61

#	Article	IF	CITATIONS
91	Alzheimer's disease drug development and the problem of the bloodâ€brain barrier. Alzheimer's and Dementia, 2009, 5, 427-432.	0.8	155
92	Blood-Brain Barrier Transport for RNAi. , 2009, , 255-273.		1
93	Lysosomal Enzyme Replacement of the Brain with Intravenous Non-Viral Gene Transfer. Pharmaceutical Research, 2008, 25, 400-406.	3.5	50
94	Intravenous glialâ€derived neurotrophic factor gene therapy of experimental Parkinson's disease with Trojan horse liposomes and a tyrosine hydroxylase promoter. Journal of Gene Medicine, 2008, 10, 306-315.	2.8	86
95	Genetic engineering of a lysosomal enzyme fusion protein for targeted delivery across the human bloodâ€brain barrier. Biotechnology and Bioengineering, 2008, 99, 475-484.	3.3	129
96	GDNF fusion protein for targetedâ€drug delivery across the human blood–brain barrier. Biotechnology and Bioengineering, 2008, 100, 387-396.	3.3	86
97	Blood—Brain Barrier Genomics and Cloning of a Novel Organic Anion Transporter. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 291-301.	4.3	38
98	Strategies to advance translational research into brain barriers. Lancet Neurology, The, 2008, 7, 84-96.	10.2	432
99	Re-Engineering Biopharmaceuticals for Delivery to Brain with Molecular Trojan Horses. Bioconjugate Chemistry, 2008, 19, 1327-1338.	3.6	160
100	Genetic Engineering, Expression, and Activity of a Chimeric Monoclonal Antibodyâ´'Avidin Fusion Protein for Receptor-Mediated Delivery of Biotinylated Drugs in Humans. Bioconjugate Chemistry, 2008, 19, 731-739.	3.6	38
101	lgG-Paraoxonase-1 Fusion Protein for Targeted Drug Delivery across the Human Bloodâ^'Brain Barrier. Molecular Pharmaceutics, 2008, 5, 1037-1043.	4.6	22
102	Blood-Brain Barrier Genomics. Stroke, 2007, 38, 686-690.	2.0	40
103	Drug Targeting to the Brain. Pharmaceutical Research, 2007, 24, 1733-1744.	3.5	421
104	Fusion Antibody for Alzheimer's Disease with Bidirectional Transport Across the Bloodâ^'Brain Barrier and Aβ Fibril Disaggregation. Bioconjugate Chemistry, 2007, 18, 447-455.	3.6	121
105	Humanization of anti-human insulin receptor antibody for drug targeting across the human blood–brain barrier. Biotechnology and Bioengineering, 2007, 96, 381-391.	3.3	192
106	Genetic engineering, expression, and activity of a fusion protein of a human neurotrophin and a molecular Trojan horse for delivery across the human blood–brain barrier. Biotechnology and Bioengineering, 2007, 97, 1376-1386.	3.3	80
107	Comparison of cDNA and genomic forms of tyrosine hydroxylase gene therapy of the brain with Trojan horse liposomes. Journal of Gene Medicine, 2007, 9, 605-612.	2.8	21
108	Blood–brain barrier delivery. Drug Discovery Today, 2007, 12, 54-61.	6.4	995

#	Article	IF	CITATIONS
109	Blood–brain barrier delivery of protein and non-viral gene therapeutics with molecular Trojan horses. Journal of Controlled Release, 2007, 122, 345-348.	9.9	78
110	shRNA and siRNA delivery to the brain. Advanced Drug Delivery Reviews, 2007, 59, 141-152.	13.7	170
111	Brain Drug Development and Brain Drug Targeting. Pharmaceutical Research, 2007, 24, 1729-1732.	3.5	50
112	Intravenous siRNA of Brain Cancer with Receptor Targeting and Avidin–Biotin Technology. Pharmaceutical Research, 2007, 24, 2309-2316.	3.5	121
113	Imaging Gene Expression in the Brain with Peptide Nucleic Acid (PNA) Antisense Radiopharmaceuticals and Drug Targeting Technology. , 2006, , 38-60.		1
114	Molecular Trojan horses for blood–brain barrier drug delivery. Current Opinion in Pharmacology, 2006, 6, 494-500.	3.5	205
115	Decline in Exogenous Gene Expression in Primate Brain Following Intravenous Administration Is Due to Plasmid Degradation. Pharmaceutical Research, 2006, 23, 1586-1590.	3.5	22
116	Blood–brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Research, 2006, 1111, 227-229.	2.2	141
117	Molecular Trojan horses for blood-brain barrier drug delivery. Discovery Medicine, 2006, 6, 139-43.	0.5	43
118	Molecular Biology of the Blood–Brain Barrier. Molecular Biotechnology, 2005, 30, 057-070.	2.4	176
119	Delivery of β-Galactosidase to Mouse Brain via the Blood-Brain Barrier Transferrin Receptor. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 1075-1081.	2.5	105
120	Drug and gene targeting to the brain via blood–brain barrier receptor-mediated transport systems. International Congress Series, 2005, 1277, 49-62.	0.2	45
121	Site-directed mutagenesis of cysteine residues of large neutral amino acid transporter LAT1. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1715, 104-110.	2.6	27
122	The blood-brain barrier and neurotherapeutics. NeuroRx, 2005, 2, 1-2.	6.0	89
123	Tyrosine hydroxylase replacement in experimental Parkinson's disease with transvascular gene therapy. NeuroRx, 2005, 2, 129-138.	6.0	88
124	The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2005, 2, 3-14.	6.0	2,129
125	The blood-brain barrier: Bottleneck in brain drug development. Neurotherapeutics, 2005, 2, 3-14.	4.4	15
126	Imaging gene expression in the brain with peptide nucleic acid (PNA) antisense radiopharmaceuticals and drug targeting technology. International Journal of Peptide Research and Therapeutics, 2005, 10, 169-190.	1.9	0

#	Article	IF	CITATIONS
127	Tyrosine hydroxylase replacement in experimental Parkinson's disease with transvascular gene therapy. Neurotherapeutics, 2005, 2, 129-138.	4.4	0
128	Imaging Gene Expression in Regional Brain Ischemia in Vivo with a Targeted [111 In]-Antisense Radiopharmaceutical. Molecular Imaging, 2004, 3, 153535002004041.	1.4	4
129	Developmental Regulation of the Rabbit Blood-Brain Barrier LAT1 Large Neutral Amino Acid Transporter mRNA and Protein. Pediatric Research, 2004, 55, 557-560.	2.3	11
130	Intravenous RNA Interference Gene Therapy Targeting the Human Epidermal Growth Factor Receptor Prolongs Survival in Intracranial Brain Cancer. Clinical Cancer Research, 2004, 10, 3667-3677.	7.0	317
131	Log(BB), PS products and in silico models of drug brain penetration. Drug Discovery Today, 2004, 9, 392-393.	6.4	85
132	Organ-specific expression of the lacZ gene controlled by the opsin promoter after intravenous gene administration in adult mice. Journal of Gene Medicine, 2004, 6, 906-912.	2.8	30
133	Gene therapy of the brain. Neurology, 2004, 62, 1275-1281.	1.1	91
134	Normalization of Striatal Tyrosine Hydroxylase and Reversal of Motor Impairment in Experimental Parkinsonism with Intravenous Nonviral Gene Therapy and a Brain-Specific Promoter. Human Gene Therapy, 2004, 15, 339-350.	2.7	124
135	Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opinion on Biological Therapy, 2004, 4, 1103-1113.	3.1	107
136	Human LAT1 single nucleotide polymorphism N230K does not alter phenylalanine transport. Molecular Genetics and Metabolism, 2004, 83, 306-311.	1.1	14
137	Imaging Gene Expression in Regional Brain Ischemia In Vivo with a Targeted [¹¹¹ In]-Antisense Radiopharmaceutical. Molecular Imaging, 2004, 3, 356-363.	1.4	15
138	Imaging endogenous gene expression in brain cancer in vivo with 1111n-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology. Journal of Nuclear Medicine, 2004, 45, 1766-75.	5.0	47
139	Absence of Toxicity of Chronic Weekly Intravenous Gene Therapy with Pegylated Immunoliposomes. Pharmaceutical Research, 2003, 20, 1779-1785.	3.5	57
140	Marked enhancement in gene expression by targeting the human insulin receptor. Journal of Gene Medicine, 2003, 5, 157-163.	2.8	48
141	In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats. Journal of Gene Medicine, 2003, 5, 1039-1045.	2.8	116
142	Site-directed mutagenesis of rabbit LAT1 at amino acids 219 and 234. Journal of Neurochemistry, 2003, 84, 1322-1331.	3.9	20
143	Hypoxia induces deâ€stabilization of the LAT1 large neutral amino acid transporter mRNA in brain capillary endothelial cells. Journal of Neurochemistry, 2003, 85, 1037-1042.	3.9	29
144	Gene Targeting In Vivo with Pegylated Immunoliposomes. Methods in Enzymology, 2003, 373, 507-528.	1.0	46

#	Article	IF	CITATIONS
145	Monoclonal Antibody Radiopharmaceuticals:  Cationization, Pegylation, Radiometal Chelation, Pharmacokinetics, and Tumor Imaging. Bioconjugate Chemistry, 2003, 14, 546-553.	3.6	72
146	Imaging gene expression in the brain with peptide nucleic acid (PNA) antisense radiopharmaceuticals and drug targeting technology. International Journal of Peptide Research and Therapeutics, 2003, 10, 169-190.	1.9	2
147	Intravenous Nonviral Gene Therapy Causes Normalization of Striatal Tyrosine Hydroxylase and Reversal of Motor Impairment in Experimental Parkinsonism. Human Gene Therapy, 2003, 14, 1-12.	2.7	201
148	Global non-viral gene transfer to the primate brain following intravenous administration. Molecular Therapy, 2003, 7, 11-18.	8.2	168
149	Molecular Biology of the Blood–Brain Barrier. , 2003, 89, 385-400.		24
150	P-glycoprotein and caveolin-1α in endothelium and astrocytes of primate brain. NeuroReport, 2003, 14, 2041-2046.	1.2	61
151	The Ro52/SS-A autoantigen has elevated expression at the brain microvasculature. NeuroReport, 2003, 14, 1861-1865.	1.2	21
152	BLOOD-BRAIN BARRIER DRUG TARGETING: THE FUTURE OF BRAIN DRUG DEVELOPMENT. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 90-105.	3.4	586
153	Blood-Brain Barrier Drug Targeting Enables Neuroprotection in Brain Ischemia Following Delayed Intravenous Administration of Neurotrophins. Advances in Experimental Medicine and Biology, 2003, 513, 397-430.	1.6	60
154	Imaging gene expression in the brain with peptide nucleic acid (PNA) antisense radiopharmaceuticals and drug targeting technology. International Journal of Peptide Research and Therapeutics, 2003, 10, 169-190.	0.1	0
155	Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Molecular Vision, 2003, 9, 465-72.	1.1	73
156	Blood-brain barrier genomics and the use of endogenous transporters to cause drug penetration into the brain. Current Opinion in Drug Discovery & Development, 2003, 6, 683-91.	1.9	13
157	Blood-Brain Barrier Disruption Following the Internal Carotid Arterial Perfusion of Alkyl Glycerols. Journal of Drug Targeting, 2002, 10, 463-467.	4.4	32
158	Vascular Proteomics and Subtractive Antibody Expression Cloning. Molecular and Cellular Proteomics, 2002, 1, 75-82.	3.8	28
159	Enhanced Neuroprotective Effects of Basic Fibroblast Growth Factor in Regional Brain Ischemia after Conjugation to a Blood-Brain Barrier Delivery Vector. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 605-610.	2.5	123
160	Targeting Neurotherapeutic Agents Through the Blood-Brain Barrier. Archives of Neurology, 2002, 59, 35.	4.5	98
161	Subtractive Expression Cloning Reveals High Expression of CD46 at the Blood-Brain Barrier. Journal of Neuropathology and Experimental Neurology, 2002, 61, 597-604.	1.7	50
162	Antisense Gene Therapy of Brain Cancer with an Artificial Virus Gene Delivery System. Molecular Therapy, 2002, 6, 67-72.	8.2	147

#	Article	IF	CITATIONS
163	Pharmacokinetics and Brain Uptake of Biotinylated Basic Fibroblast Growth Factor Conjugated to a Blood-Brain Barrier Drug Delivery System. Journal of Drug Targeting, 2002, 10, 239-245.	4.4	51
164	Drug and Gene Delivery to the Brain. Neuron, 2002, 36, 555-558.	8.1	369
165	Why is the global CNS pharmaceutical market so under-penetrated?. Drug Discovery Today, 2002, 7, 5-7.	6.4	129
166	Formulation of therapeutic synthetic polymers for drug and gene delivery â—¾. Drug Discovery Today, 2002, 7, 1120-1121.	6.4	2
167	Receptor-mediated delivery of an antisense gene to human brain cancer cells. Journal of Gene Medicine, 2002, 4, 183-194.	2.8	125
168	Glucose deprivation and hypoxia increase the expression of the GLUT1 glucose transporter via a specific mRNA cis-acting regulatory element. Journal of Neurochemistry, 2002, 80, 552-554.	3.9	68
169	Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier. Journal of Neurochemistry, 2002, 81, 203-206.	3.9	235
170	Evidence for Translational Control Elements Within the 5′-Untranslated Region of GLUT1 Glucose Transporter mRNA. Journal of Neurochemistry, 2002, 67, 1335-1343.	3.9	26
171	Site-Directed Deletion of a 10-Nucleotide Domain of the 3′-Untranslated Region of the GLUT1 Glucose Transporter mRNA Eliminates Cytosolic Protein Binding in Human Brain Tumors and Induction of Reporter Gene Expression. Journal of Neurochemistry, 2002, 68, 2587-2592.	3.9	14
172	Up-Regulation of Blood-Brain Barrier Short-Form Leptin Receptor Gene Products in Rats Fed a High Fat Diet. Journal of Neurochemistry, 2002, 71, 1761-1764.	3.9	81
173	Imaging Brain Amyloid of Alzheimer Disease in Vivo in Transgenic Mice with an $A\hat{I}^2$ Peptide Radiopharmaceutical. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 223-231.	4.3	77
174	Vascular Genomics of the Human Brain. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 245-252.	4.3	58
175	Rat Blood–Brain Barrier Genomics. II. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1319-1326.	4.3	34
176	Drug and gene targeting to the brain with molecular trojan horses. Nature Reviews Drug Discovery, 2002, 1, 131-139.	46.4	405
177	Synthesis of pegylated immunonanoparticles. Pharmaceutical Research, 2002, 19, 1137-1143.	3.5	206
178	Rat Blood???Brain Barrier Genomics. II. Journal of Cerebral Blood Flow and Metabolism, 2002, , 1319-1326.	4.3	13
179	Imaging gene expression in the brain in vivo in a transgenic mouse model of Huntington's disease with an antisense radiopharmaceutical and drug-targeting technology. Journal of Nuclear Medicine, 2002, 43, 948-56.	5.0	45
180	Widespread expression of an exogenous gene in the eye after intravenous administration. Investigative Ophthalmology and Visual Science, 2002, 43, 3075-80.	3.3	30

#	Article	IF	CITATIONS
181	Neurotrophins, neuroprotection and the blood-brain barrier. Current Opinion in Investigational Drugs, 2002, 3, 1753-7.	2.3	35
182	Pharmacokinetics and Delivery of Tat and Tat-Protein Conjugates to Tissues in Vivo. Bioconjugate Chemistry, 2001, 12, 995-999.	3.6	84
183	Brain Drug Targeting and Gene Technologies. The Japanese Journal of Pharmacology, 2001, 87, 97-103.	1.2	51
184	Neuroprotection in Transient Focal Brain Ischemia After Delayed Intravenous Administration of Brain-Derived Neurotrophic Factor Conjugated to a Blood-Brain Barrier Drug Targeting System. Stroke, 2001, 32, 1378-1384.	2.0	169
185	Rapid transferrin efflux from brain to blood across the blood-brain barrier. Journal of Neurochemistry, 2001, 76, 1597-1600.	3.9	133
186	Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharmaceutical Research, 2001, 18, 1091-1095.	3.5	144
187	Blood—Brain Barrier Genomics. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 61-68.	4.3	150
188	Cloned Blood–Brain Barrier Adenosine Transporter is Identical to the Rat Concentrative Na+ Nucleoside Cotransporter CNT2. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 929-936.	4.3	74
189	Mediated efflux of IgG molecules from brain to blood across the blood–brain barrier. Journal of Neuroimmunology, 2001, 114, 168-172.	2.3	240
190	Delivery of peptides and proteins through the blood–brain barrier. Advanced Drug Delivery Reviews, 2001, 46, 247-279.	13.7	409
191	Conjugation of brain-derived neurotrophic factor to a blood–brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain Research, 2001, 889, 49-56.	2.2	158
192	Crossing the blood–brain barrier: are we getting it right?. Drug Discovery Today, 2001, 6, 1-2.	6.4	71
193	BBB-Genomics: creating new openings for brain-drug targeting. Drug Discovery Today, 2001, 6, 381-383.	6.4	64
194	Neuroprotection in stroke: is it time to consider large-molecule drugs?. Drug Discovery Today, 2001, 6, 751-753.	6.4	3
195	Selective Lutheran Glycoprotein Gene Expression at the Blood—Brain Barrier in Normal Brain and in Human Brain Tumors. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1096-1102.	4.3	15
196	Brain microvascular P-glycoprotein and a revised model of multidrug resistance in brain. Cellular and Molecular Neurobiology, 2000, 20, 165-181.	3.3	69
197	Blood-brain barrier transport of 1251-labeled basic fibroblast growth factor. Pharmaceutical Research, 2000, 17, 63-69.	3.5	62
198	Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharmaceutical Research, 2000, 17, 266-274.	3.5	181

#	Article	IF	CITATIONS
199	Aβ1-40Peptide Radiopharmaceuticals for Brain Amyloid Imaging:Â111In Chelation, Conjugation to Poly(ethylene glycol)-Biotin Linkers, and Autoradiography with Alzheimer's Disease Brain Sections. Bioconjugate Chemistry, 2000, 11, 380-386.	3.6	48
200	Drug Targeting to the Brain Using Avidin-Biotin Technology in the Mouse (Blood-Brain Barrier,) Tj ETQq0 0 0 rgB1 413-424.	Г /Overlock 4.4	2 10 Tf 50 70 18
201	Epidermal Growth Factor Radiopharmaceuticals:Â1111n Chelation, Conjugation to a Blood-Brain Barrier Delivery Vector via a Biotin-Polyethylene Linker, Pharacokinetics, and in Vivo Imaging of Experimental Brain Tumors. Bioconjugate Chemistry, 1999, 10, 502-511.	3.6	69
202	Blood-brain barrier biology and methodology. Journal of NeuroVirology, 1999, 5, 556-569.	2.1	402
203	Blood-brain barrier transport of reduced folic acid. Pharmaceutical Research, 1999, 16, 415-419.	3.5	78
204	Vector-mediated drug delivery to the brain. Advanced Drug Delivery Reviews, 1999, 36, 299-321.	13.7	131
205	P-glycoprotein on astrocyte foot processes of unfixed isolated human brain capillaries. Brain Research, 1999, 819, 143-146.	2.2	100
206	Non-invasive drug delivery to the human brain using endogenous blood–brain barrier transport systems. Pharmaceutical Science & Technology Today, 1999, 2, 49-59.	0.7	67
207	Amplification of gene expression using both 5′- and 3′-untranslated regions of GLUT1 glucose transporter mRNA. Molecular Brain Research, 1999, 63, 371-374.	2.3	10
208	Retention of Biologic Activity of Human Epidermal Growth Factor Following Conjugation to a Blood-Brain Barrier Drug Delivery Vector via an Extended Poly(ethylene glycol) Linker. Bioconjugate Chemistry, 1999, 10, 32-37.	3.6	41
209	hnRNP A2 and hnRNP L Bind the 3′UTR of Glucose Transporter 1 mRNA and Exist as a Complex in Vivo. Biochemical and Biophysical Research Communications, 1999, 261, 646-651.	2.1	83
210	Combined use of carboxyl-directed protein pegylation and vector-mediated blood-brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor following intravenous administration. Pharmaceutical Research, 1998, 15, 576-582.	3.5	128
211	Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochemical Research, 1998, 23, 635-644.	3.3	240
212	Drug Delivery of Antisense Molecules to the Brain for Treatment of Alzheimer's Disease and Cerebral AIDS. Journal of Pharmaceutical Sciences, 1998, 87, 1308-1315.	3.3	61
213	Low blood–brain barrier permeability to azidothymidine (AZT), 3TC™, and thymidine in the rat. Brain Research, 1998, 791, 313-316.	2.2	49
214	GLUT1 glucose transporter: differential gene transcription and mRNA binding to cytosolic and polysome proteins in brain and peripheral tissues. Molecular Brain Research, 1998, 58, 170-177.	2.3	21
215	Ten nucleotide cis element in the 3′-untranslated region of the GLUT1 glucose transporter mRNA increases gene expression via mRNA stabilization. Molecular Brain Research, 1998, 59, 109-113.	2.3	55
216	Treatment of Large Solid Tumors in Mice with Daunomycin-Loaded Sterically Stabilized Liposomes. Drug Delivery, 1998, 5, 207-212.	5.7	8

#	Article	IF	CITATIONS
217	Drug transport across the blood–Brain barrier: In Vitro and In Vivo techniques. Drug Delivery, 1998, 5, 153-153.	5.7	3
218	Interactions of lipoproteins with the bloodâ \in "brain barrier. , 1998, , 221-226.		1
219	Tissue culture of brain endothelial cells – induction of blood–brain barrier properties by brain factors. , 1998, , 79-85.		5
220	Blood–brain barrier ion transport. , 1998, , 207-213.		11
221	Blood–brain barrier amino acid transport. , 1998, , 188-197.		35
222	Transport in the developing brain. , 1998, , 277-290.		7
223	The carotid artery single injection technique. , 1998, , 11-23.		3
224	Development of Brain Efflux Index (BEI) method and its application to the blood–brain barrier efflux transport study. , 1998, , 24-31.		4
225	Isolation and behavior of plasma membrane vesicles made from cerebral capillary endothelial cells. , 1998, , 62-70.		7
226	Isolated brain capillaries: an in vitro model of blood–brain barrier research. , 1998, , 49-61.		14
227	Cytokines and the blood-brain barrier. , 1998, , 354-361.		1
228	<i>In situ</i> brain perfusion. , 1998, , 32-40.		1
229	HIV infection and the blood–brain barrier. , 1998, , 419-426.		4
230	Blood–brain barrier and monoamines, revisited. , 1998, , 362-376.		3
231	Brain microvessel endothelial cell culture systems. , 1998, , 86-93.		9
232	Role of intracellular calcium in regulation of brain endothelial permeability. , 1998, , 345-353.		15
233	Examination of Bloodâ€Brain Barrier Transferrin Receptor by Confocal Fluorescent Microscopy of Unfixed Isolated Rat Brain Capillaries. Journal of Neurochemistry, 1998, 70, 883-886.	3.9	68
234	CNS Drug Design Based on Principles of Bloodâ€Brain Barrier Transport. Journal of Neurochemistry, 1998, 70, 1781-1792.	3.9	374

#	Article	IF	CITATIONS
235	Blood–brain barrier methodology and biology. , 1998, , 1-8.		18
236	Patch clamp techniques with isolated brain microvessel membranes. , 1998, , 71-78.		2
237	Intracerebral microdialysis. , 1998, , 94-112.		5
238	Bloodâ \in "brain barrier permeability measured with histochemistry. , 1998, , 113-121.		11
239	Measuring cerebral capillary permeability–surface area products by quantitative autoradiography. , 1998, , 122-132.		3
240	Measurement of blood–brain barrier in humans using indicator diffusion. , 1998, , 133-139.		2
241	Measurement of blood–brain permeability in humans with positron emission tomography. , 1998, , 140-146.		1
242	Molecular biology of brain capillaries. , 1998, , 151-162.		5
243	Biology of the blood–brain glucose transporter. , 1998, , 165-174.		14
244	Glucose transporters in mammalian brain development. , 1998, , 175-187.		1
245	P-glycoprotein, a guardian of the brain. , 1998, , 198-206.		5
246	Ion channels in endothelial cells. , 1998, , 214-220.		3
247	Blood–brain barrier transport of drugs. , 1998, , 238-248.		9
248	The blood-CSF barrier and the choroid plexus. , 1998, , 251-258.		8
249	Arachnoid membrane, subarachnoid CSF and pia–glia. , 1998, , 259-269.		8
250	Circumventricular organs of the brain. , 1998, , 270-276.		8
251	Regulation of brain endothelial cell tight junction permeability. , 1998, , 293-300.		2

252 Chemotherapy and chemosensitization. , 1998, , 301-307.

#	Article	IF	CITATIONS
253	Molecular dissection of tight junctions: occludin and ZO-1. , 1998, , 322-329.		6
254	Nitric oxide and endothelin at the blood–brain barrier. , 1998, , 338-344.		2
255	Cerebral amyloid angiopathy. , 1998, , 379-385.		5
256	Brain microvasculature in multiple sclerosis. , 1998, , 386-400.		11
257	Hemostasis and the blood–brain barrier. , 1998, , 401-408.		1
258	Microvascular pathology in cerebrovascular ischemia. , 1998, , 409-418.		3
259	The blood-brain barrier in brain tumours. , 1998, , 434-440.		4
260	The pathophysiology of blood–brain barrier dysfunction due to traumatic brain injury. , 1998, , 441-453.		6
261	Lipid composition of brain microvessels. , 1998, , 308-313.		0
262	Magnetic resonance imaging of blood–brain barrier permeability. , 1998, , 147-150.		0
263	Intravenous injection/pharmacokinetics. , 1998, , 41-48.		0
264	Brain microvessel antigens. , 1998, , 314-321.		1
265	Fatty acid and lipid intermediate transport. , 1998, , 227-237.		Ο
266	Phosphatidylinositol pathways. , 1998, , 330-337.		0
267	The 5′-Untranslated Region of GLUT1 Glucose Transporter mRNA Causes Differential Regulation of the Translational Rate in Plant and Animal Systems. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 118, 309-312.	1.6	8
268	Drug Delivery to the Brain. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 713-731.	4.3	262
269	Carboxyl-directed pegylation of brain-derived neurotrophic factor markedly reduces systemic clearance with minimal loss of biologic activity. , 1997, 14, 1085-1091.		107
270	Brain Microvascular and Astrocyte Localization of P lycoprotein. Journal of Neurochemistry, 1997, 68, 1278-1285.	3.9	128

#	Article	IF	CITATIONS
271	Blood-Brain Barrier Transport Mechanisms. , 1997, , 21-25.		2
272	Physiologic-based strategies for protein drug delivery to the brain. Journal of Controlled Release, 1996, 39, 281-286.	9.9	8
273	Pathological upregulation of inner blood-retinal barrier Glut1 glucose transporter expression in diabetes mellitus. Brain Research, 1996, 706, 313-317.	2.2	67
274	Brain drug delivery and blood–brain barrier transport. Drug Delivery, 1996, 3, 99-115.	5.7	24
275	<i>Cis</i> â€Element/Cytoplasmic Protein Interaction Within the 3′â€Untranslated Region of the GLUT1 Glucose Transporter mRNA. Journal of Neurochemistry, 1996, 66, 449-458.	3.9	41
276	Enhanced cellular uptake and in vivo biodistribution of a monoclonal antibody following cationization. Journal of Pharmaceutical Sciences, 1995, 84, 943-948.	3.3	48
277	Transport of small molecules through the blood-brain barrier: biology and methodology. Advanced Drug Delivery Reviews, 1995, 15, 5-36.	13.7	238
278	Vector-mediated peptide drug delivery to the brain. Advanced Drug Delivery Reviews, 1995, 15, 109-146.	13.7	41
279	Transport of [125I]transferrin through the rat blood-brain barrier. Brain Research, 1995, 683, 164-171.	2.2	153
280	Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharmaceutical Research, 1995, 12, 807-816.	3.5	277
281	Targeting of an Anti-CR3 (CD11b/CD18) Monoclonal Antibody to Spleen But Not Brain, In Vivo in Mice. Journal of Drug Targeting, 1995, 3, 9-14.	4.4	10
282	Pharmacokinetics of [3H]Biotin Bound to Different Avidin Analogues. Journal of Drug Targeting, 1995, 3, 159-165.	4.4	39
283	Pharmacokinetic differences between111In- and125I-Labeled cationized monoclonal antibody against β-Amyloid in mouse and dog. Drug Delivery, 1995, 2, 128-135.	5.7	13
284	In Vivo Cleavability of a Disulfide-Based Chimeric Opioid Peptide in Rat Brain. Bioconjugate Chemistry, 1995, 6, 211-218.	3.6	46
285	Molecular Regulation of Blood-Brain Barrier GLUT1 Glucose Transporter. , 1995, , 81-88.		1
286	Preface: Overview of brain drug delivery Advanced Drug Delivery Reviews, 1995, 15, 1-3.	13.7	3
287	Vector-mediated peptide drug delivery to the brain Advanced Drug Delivery Reviews, 1995, 15, 109-146.	13.7	2
288	Transport of small molecules through the blood-brain barrier: biology and methodology Advanced Drug Delivery Reviews, 1995, 15, 5-36.	13.7	6

#	Article	IF	CITATIONS
289	Cationization of a monoclonal antibody to the human immunodeficiency virus REV protein enhances cellular uptake but does not impair antigen binding of the antibody. Immunology Letters, 1994, 42, 191-195.	2.5	29
290	Glucose transport and phosphorylation: Which is rate limiting for brain glucose utilization?. Annals of Neurology, 1994, 35, 511-512.	5.3	24
291	New approaches to drug delivery through the blood-brain barrier. Trends in Biotechnology, 1994, 12, 239-245.	9.3	35
292	Transport of human recombinant brain-derived neurotrophic factor (BDNF) through the rat blood-brain barrier in vivo using vector-mediated peptide drug delivery. Pharmaceutical Research, 1994, 11, 738-746.	3.5	175
293	Brain delivery of biotin bound to a conjugate of neutral avidin and cationized human albumin. Pharmaceutical Research, 1994, 11, 1257-1264.	3.5	40
294	Gene expression of GLUT3 and GLUT1 glucose transporters in human brain tumors. Molecular Brain Research, 1994, 27, 51-57.	2.3	136
295	Enhanced expression of the blood-brain barrier GLUT1 glucose transporter gene by brain-derived factors. Molecular Brain Research, 1994, 22, 259-267.	2.3	45
296	Differential glycosylation of the GLUT1 glucose transporter in brain capillaries and choroid plexus. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1193, 24-30.	2.6	50
297	Complete Inactivation of Target mRNA by Biotinylated Antisense Oligodeoxynucleotide-Avidin Conjugates. Bioconjugate Chemistry, 1994, 5, 406-410.	3.6	30
298	Development and in vitro Characterization of a Cationized Monoclonal Antibody against βA4 Protein: A Potential Probe for Alzheimer's Disease. Bioconjugate Chemistry, 1994, 5, 119-125.	3.6	31
299	Enzymatic barrier protects brain capillaries from leukotriene C4. Journal of Neurosurgery, 1994, 81, 745-751.	1.6	35
300	Measurement of Bloodâ€Brain Barrier GLUT1 Glucose Transporter and Actin mRNA by a Quantitative Polymerase Chain Reaction Assay. Journal of Neurochemistry, 1994, 62, 2085-2090.	3.9	30
301	Steroid Hormone Transport through Blood–Brain Barrier: Methods and Concepts. Methods in Neurosciences, 1994, 22, 3-22.	0.5	4
302	An Electron Microscopic Immunogold Analysis of Developmental Up-Regulation of the Blood—Brain Barrier GLUT1 Glucose Transporter. Journal of Cerebral Blood Flow and Metabolism, 1993, 13, 841-854.	4.3	66
303	Glucose Deprivation Causes Posttranscriptional Enhancement of Brain Capillary Endothelial Glucose Transporter Gene Expression via GLUT1 mRNA Stabilization. Journal of Neurochemistry, 1993, 60, 2290-2296.	3.9	124
304	Delivery of peptides and proteins through the blood-brain barrier. Advanced Drug Delivery Reviews, 1993, 10, 205-245.	13.7	37
305	Insulin therapy normalizes CLUT1 glucose transporter mRNA but not immunoreactive transporter protein in streptozocin-diabetic rats. Metabolism: Clinical and Experimental, 1993, 42, 939-944.	3.4	29
306	Transport of Insulin-Related Peptides and Glucose across the Blood-Brain Barrier. Annals of the New York Academy of Sciences, 1993, 692, 126-137.	3.8	69

#	Article	IF	CITATIONS
307	Drug delivery of antisense oligonucleotides or peptides to tissues <i>in vivo</i> using an avidin–biotin system. Drug Delivery, 1993, 1, 43-50.	5.7	19
308	Brain drug delivery and blood–Brain barrier transport. Drug Delivery, 1993, 1, 83-101.	5.7	31
309	Localization of Blood-Brain Barrier-Specific Antibodies with Immunogold-Silver Enhancement. Journal of Histotechnology, 1993, 16, 249-257.	0.5	3
310	Enhanced GLUT1 glucose transporter and cytoskeleton gene expression in cultured bovine brain capillary endothelial cells after treatment with phorbol esters and serum. Molecular Brain Research, 1992, 15, 221-226.	2.3	19
311	Complete protection of antisense oligonucleotides against serum nuclease degradation by an avidin-biotin system. Bioconjugate Chemistry, 1992, 3, 519-523.	3.6	33
312	Determination of in vivo steady-state unbound drug concentration in the brain interstitial fluid by microdialysis. International Journal of Pharmaceutics, 1992, 81, 143-152.	5.2	51
313	Recent Developments in Peptide Drug Delivery to the Brain. Basic and Clinical Pharmacology and Toxicology, 1992, 71, 3-10.	0.0	57
314	Brain Capillary Endothelial Transport of Insulin. , 1992, , 347-362.		3
315	Enhanced cellular uptake of biotinylated antisense oligonucleotide or peptide mediated by avidin, a cationic protein. FEBS Letters, 1991, 288, 30-32.	2.8	75
316	Ultrastructural localization of blood-brain barrier-specific antibodies using immunogold-silver enhancement techniques. Journal of Neuroscience Methods, 1991, 37, 103-110.	2.5	14
317	A One-Step Procedure for Isolation of Poly(A)+mRNA from Isolated Brain Capillaries and Endothelial Cells in Culture. Journal of Neurochemistry, 1991, 57, 2136-2139.	3.9	68
318	Blood-Brain Barrier Transport of Glucose, Free Fatty Acids, and Ketone Bodies. Advances in Experimental Medicine and Biology, 1991, 291, 43-53.	1.6	26
319	Astrocyte Growth Stimulation by a Soluble Factor Produced by Cerebral Endothelial Cellsin vitro. Journal of Neuropathology and Experimental Neurology, 1990, 49, 539-549.	1.7	72
320	Transport of Tryptophan into Brain from the Circulating, Albumin-Bound Pool in Rats and in Rabbits. Journal of Neurochemistry, 1990, 54, 971-976.	3.9	75
321	Capillary Depletion Method for Quantification of Blood?Brain Barrier Transport of Circulating Peptides and Plasma Proteins. Journal of Neurochemistry, 1990, 54, 1882-1888.	3.9	443
322	Measurement of Free Intracellular and Transfer RNA Amino Acid Specific Activity and Protein Synthesis in Rat Brain in vivo. Journal of Cerebral Blood Flow and Metabolism, 1990, 10, 162-169.	4.3	22
323	Reduction of testosterone availability to 5α-reductase by human sex hormone-binding globulin in the rat ventral prostate gland in vivo. Prostate, 1990, 17, 281-291.	2.3	10
324	Red cell phenylalanine is not available for transport through the blood-brain barrier. Neurochemical Research, 1990, 15, 769-772.	3.3	7

#	Article	IF	CITATIONS
325	Immunohistochemical study of cerebral amyloid angiopathy. III. Widespread alzheimer A4 peptide in cerebral microvessel walls colocalizes with gamma trace in patients with leukoencephalopathy. Annals of Neurology, 1990, 28, 34-42.	5.3	78
326	βEndorphin Chimeric Peptides: Transport through the Blood-Brain Barrier <i>in Vivo</i> and Cleavage of Bisulfide Linkage by Brain*. Endocrinology, 1990, 126, 977-984.	2.8	70
327	Molecular cloning of the bovine blood-brain barrier glucose transporter cDNA and demonstration of phylogenetic conservation of the 5′-untranslated region. Molecular and Cellular Neurosciences, 1990, 1, 224-232.	2.2	75
328	Differential expression of 53- and 45-kDa brain capillary-specific proteins by brain capillary endothelium and choroid plexus in vivo and by brain capillary endothelium in tissue culture. Molecular and Cellular Neurosciences, 1990, 1, 20-28.	2.2	18
329	Kinetics of lactate transport into rat liver in vivo. Metabolism: Clinical and Experimental, 1990, 39, 374-377.	3.4	13
330	Decreases in brain protein synthesis elicited by moderate increases in plasma phenylalanine. Biochemical and Biophysical Research Communications, 1990, 168, 1177-1183.	2.1	13
331	The brain-type glucose transporter mRNA is specifically expressed at the blood-brain barrier. Biochemical and Biophysical Research Communications, 1990, 166, 174-179.	2.1	116
332	Triiodothyronine bound to red blood cells is not available for transport through the blood-brain barrier. Neurochemical Research, 1989, 14, 657-659.	3.3	1
333	Predominant Low-Molecular-Weight Proteins in Isolated Brain Capillaries Are Histones. Journal of Neurochemistry, 1989, 53, 1014-1018.	3.9	2
334	Brain Capillary 46,000 Dalton Protein is Cytoplasmic Actin and is Localized to Endothelial Plasma Membrane. Journal of Cerebral Blood Flow and Metabolism, 1989, 9, 675-680.	4.3	34
335	Strategies for drug delivery through the blood-brain barrier. Neurobiology of Aging, 1989, 10, 636-637.	3.1	16
336	Blood-brain barrier glucose transporter mRNA is increased in experimental diabetes mellitus. Biochemical and Biophysical Research Communications, 1989, 164, 375-380.	2.1	55
337	Influx of Testosterone-Binding Globulin (TeBG) and TeBC-Bound Sex Steroid Hormones Into Rat Testis and Prostate*. Journal of Clinical Endocrinology and Metabolism, 1988, 67, 98-103.	3.6	57
338	Human blood-brain barrier insulin-like growth factor receptor. Metabolism: Clinical and Experimental, 1988, 37, 136-140.	3.4	155
339	Immunohistochemical study of cerebral amyloid angiopathy: Use of an antiserum to a synthetic 28-amino-acid peptide fragment of the Alzheimer's disease amyloid precursor. Human Pathology, 1988, 19, 214-222.	2.0	41
340	Selective Delivery of Sex Steroid Hormones to Tissues In Vivo by Albumin and by Sex Hormoneâ€Binding Globulina. Annals of the New York Academy of Sciences, 1988, 538, 173-192.	3.8	47
341	New Directions in Blood-Brain Barrier Research Annals of the New York Academy of Sciences, 1988, 529, 50-60.	3.8	11
342	Developmental changes in brain and serum binding of testosterone and in brain capillary uptake of testosterone-binding serum proteins in the rabbit. Developmental Brain Research, 1988, 38, 245-253.	1.7	16

#	Article	IF	CITATIONS
343	Does the brain's gatekeeper falter in aging?. Neurobiology of Aging, 1988, 9, 44-46.	3.1	18
344	Phenylalanine Transport at the Human Blood-Brain Barrier. , 1988, , 55-62.		12
345	Receptor-mediated peptide transport through the blood-brain barrier. , 1988, , 593-595.		1
346	Human blood-brain barrier transferrin receptor. Metabolism: Clinical and Experimental, 1987, 36, 892-895.	3.4	316
347	The effects of membrane permeability and binding by human serum proteins on steroid influx into the rabbit uterus. American Journal of Obstetrics and Gynecology, 1987, 157, 1543-1549.	1.3	1
348	Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Research, 1987, 420, 32-38.	2.2	361
349	Chimeric peptides as a vehicle for peptide pharmaceutical delivery through the blood-brain barrier. Biochemical and Biophysical Research Communications, 1987, 146, 307-313.	2.1	76
350	High molecular weight Alzheimer's disease amyloid peptide immunoreactivity in human serum and CSF is an immunoglobulin G. Biochemical and Biophysical Research Communications, 1987, 145, 241-248.	2.1	29
351	Amyloid Angiopathy of Alzheimer's Disease: Amino Acid Composition and Partial Sequence of a 4,200-Dalton Peptide Isolated from Cortical Microvessels. Journal of Neurochemistry, 1987, 49, 1394-1401.	3.9	70
352	Mechanisms of Neuropeptide Interaction with the Blood-Brain Barrier. Annals of the New York Academy of Sciences, 1986, 481, 231-249.	3.8	26
353	Receptor-Mediated Peptide Transport through the Blood-Brain Barrier*. Endocrine Reviews, 1986, 7, 314-330.	20.1	293
354	4 Serum bioavailability of sex steroid hormones. Clinics in Endocrinology and Metabolism, 1986, 15, 259-278.	1.6	184
355	Enhanced Hepatic Extraction of Estrogens Used for Replacement Therapy*. Journal of Clinical Endocrinology and Metabolism, 1986, 62, 761-766.	3.6	67
356	Blood-Brain Barrier: Interface Between Internal Medicine and the Brain. Annals of Internal Medicine, 1986, 105, 82.	3.9	146
357	The Blood-Brain Barrier in Alzheimer's Disease. Canadian Journal of Neurological Sciences, 1986, 13, 446-448.	0.5	22
358	Serum Bioavailability and Tissue Metabolism of Testosterone and Estradiol in Rat Salivary Gland*. Journal of Clinical Endocrinology and Metabolism, 1986, 63, 20-28.	3.6	31
359	Antibodies to Blood—Brain Barrier Bind Selectively to Brain Capillary Endothelial Lateral Membranes and to a 46K Protein. Journal of Cerebral Blood Flow and Metabolism, 1986, 6, 203-211.	4.3	53
360	Blood?Brain Barrier Protein and Phosphorylation and Dephosphorylation. Journal of Neurochemistry, 1985, 45, 1141-1147.	3.9	68

#	Article	IF	CITATIONS
361	Human Blood?Brain Barrier Insulin Receptor. Journal of Neurochemistry, 1985, 44, 1771-1778.	3.9	368
362	Restricted Transport of Vitamin D and A Derivatives Through the Rat Blood-Brain Barrier. Journal of Neurochemistry, 1985, 44, 1138-1141.	3.9	114
363	Rapid Sequestration and Degradation of Somatostatin Analogues by Isolated Brain Microvessels. Journal of Neurochemistry, 1985, 44, 1178-1184.	3.9	116
364	Blood?Brain Barrier Transport of Valproic Acid. Journal of Neurochemistry, 1985, 44, 1541-1550.	3.9	102
365	Restrictive Transport of a Lipid-Soluble Peptide (Cyclosporin) Through the Blood?Brain Barrier. Journal of Neurochemistry, 1985, 45, 1954-1956.	3.9	96
366	Kinetics of Regional Blood-Brain Barrier Glucose Transport and Cerebral Blood Flow Determined with the Carotid Injection Technique in Conscious Rats. Journal of Neurochemistry, 1985, 44, 911-915.	3.9	44
367	Blood—Brain Barrier Transport of Butanol and Water Relative to <i>N</i> -Isopropyl- <i>p</i> -lodoamphetamine as the Internal Reference. Journal of Cerebral Blood Flow and Metabolism, 1985, 5, 275-281.	4.3	84
368	Two-Day Starvation Does Not Alter the Kinetics of Blood-Brain Barrier Transport and Phosphorylation of Glucose in Rat Brain. Journal of Cerebral Blood Flow and Metabolism, 1985, 5, 40-46.	4.3	31
369	Carotid Artery Injection Technique: Bounds for Bolus Mixing by Plasma and by Brain. Journal of Cerebral Blood Flow and Metabolism, 1985, 5, 576-583.	4.3	69
370	Chapter 31. Strategies for Delivery of Drugs Through the Blood-Brain Barrier. Annual Reports in Medicinal Chemistry, 1985, 20, 305-313.	0.9	21
371	Strategies for Drug Delivery through the Blood-Brain Barrier. , 1985, , 83-96.		14
372	Kinetics of Transport and Phosphorylation of 2-Fluoro-2-Deoxy-d-Glucose in Rat Brain. Journal of Neurochemistry, 1983, 40, 160-167.	3.9	102
373	Increased Blood—Brain Barrier Transport of Protein-Bound Anticonvulsant Drugs in the Newborn. Journal of Cerebral Blood Flow and Metabolism, 1983, 3, 280-286.	4.3	28
374	Protein-Bound Corticosteroid in Human Serum Is Selectively Transported into Rat Brain and Liver in Vivo*. Journal of Clinical Endocrinology and Metabolism, 1983, 57, 160-165.	3.6	39
375	The Effect of Membrane Permeability and Binding by Human Serum Proteins on Sex Steroid Influx into the Uterus*. Journal of Clinical Endocrinology and Metabolism, 1983, 56, 1282-1287.	3.6	31
376	Critical Illness and Low Testosterone: Effects of Human Serum on Testosterone Transport into Rat Brain and Liver*. Journal of Clinical Endocrinology and Metabolism, 1983, 56, 710-714.	3.6	25
377	Transport of Propranolol and Lidocaine through the Rat Blood-Brain Barrier. PRIMARY ROLE OF GLOBULIN-BOUND DRUG. Journal of Clinical Investigation, 1983, 71, 900-908.	8.2	111
378	Kinetics of Neutral Amino Acid Transport Through the Blood-Brain Barrier of the Newborn Rabbit. Journal of Neurochemistry, 1982, 38, 955-962.	3.9	63

#	Article	IF	CITATIONS
379	Measurement of Cerebral Glucose Utilization Using Washout After Carotid Injection in the Rat. Journal of Neurochemistry, 1982, 38, 1413-1418.	3.9	25
380	Matters Arising. Journal of Neurochemistry, 1982, 39, 1774-1776.	3.9	2
381	Kinetics of Regional Blood?Brain Barrier Transport and Brain Phosphorylation of Glucose and 2-Deoxyglucose in the Barbiturate?Anesthetized Rat. Journal of Neurochemistry, 1982, 38, 560-568.	3.9	99
382	Nomogram for 2-Deoxyglucose Lumped Constant for Rat Brain Cortex. Journal of Cerebral Blood Flow and Metabolism, 1982, 2, 197-202.	4.3	61
383	Transport of Protein-Bound Hormones into Tissues <i>in Vivo</i> *. Endocrine Reviews, 1981, 2, 103-123.	20.1	438
384	The Interaction of Transport and Metabolism on Brain Glucose Utilization: A Reevaluation of the Lumped Constant. Journal of Neurochemistry, 1981, 36, 1601-1604.	3.9	99
385	Enkephalin and Blood-Brain Barrier: Studies of Binding and Degradation in Isolated Brain Micro vessels*. Endocrinology, 1981, 109, 1138-1143.	2.8	100
386	Palmitate and Cholesterol Transport Through the Blood-Brain Barrier. Journal of Neurochemistry, 1980, 34, 463-466.	3.9	128
387	Transport of Albumin-bound Melatonin Through the Blood-Brain Barrier. Journal of Neurochemistry, 1980, 34, 1761-1763.	3.9	101
388	Transport of Thyroid and Steroid Hormones through the Blood-Brain Barrier of the Newborn Rabbit: Primary Role of Protein-Bound Hormone*. Endocrinology, 1980, 107, 1705-1710.	2.8	31
389	Effects of Progesterone-Binding Clobulin Versus a Progesterone Antiserum on Steroid Hormone Transport through the Blood-Brain Barrier*. Endocrinology, 1980, 106, 1137-1141.	2.8	16
390	Influx of Thyroid Hormones into Rat Liver In Vivo. Journal of Clinical Investigation, 1980, 66, 367-374.	8.2	80
391	Carrier-Mediated Transport of Thyroid Hormones through the Rat Blood-Brain Barrier: Primary Role of Albumin-Bound Hormone*. Endocrinology, 1979, 105, 605-612.	2.8	162
392	KINETICS OF BLOOD-BRAIN BARRIER TRANSPORT OF PYRUVATE, LACTATE AND GLUCOSE IN SUCKLING, WEANLING AND ADULT RATS. Journal of Neurochemistry, 1979, 33, 439-445.	3.9	265
393	Regional blood-brain barrier transport of the steroid hormones. Journal of Neurochemistry, 1979, 33, 579-581.	3.9	18
394	Transport of Steroid Hormones through the Rat Blood-Brain Barrier. Journal of Clinical Investigation, 1979, 64, 145-154.	8.2	382
395	Glucose and amino acid metabolism in an established line of skeletal muscle cells. Journal of Cellular Physiology, 1978, 96, 309-317.	4.1	23
396	TRANSPORT OF METABOLIC SUBSTRATES THROUGH THE BLOOD-BRAIN BARRIER. Journal of Neurochemistry, 1977, 28, 5-12.	3.9	523

#	Article	IF	CITATIONS
397	Inorganic mercury: selective effects on blood-brain barrier transport systems. Journal of Neurochemistry, 1976, 27, 333-335.	3.9	25
398	Kinetics of blood-brain barrier transport of hexoses. Biochimica Et Biophysica Acta - Biomembranes, 1975, 382, 377-392.	2.6	234
399	Kinetic analysis of blood-brain barrier transport of amino acids. Biochimica Et Biophysica Acta - Biomembranes, 1975, 401, 128-136.	2.6	292