William M Pardridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3671308/publications.pdf

Version: 2024-02-01

399 papers 32,698 citations

92 h-index 164 g-index

410 all docs

410 docs citations

410 times ranked

20682 citing authors

#	Article	IF	CITATIONS
1	The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2005, 2, 3-14.	6.0	2,129
2	Drug Transport across the Blood–Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1959-1972.	2.4	1,336
3	Blood–brain barrier delivery. Drug Discovery Today, 2007, 12, 54-61.	3.2	995
4	BLOOD-BRAIN BARRIER DRUG TARGETING: THE FUTURE OF BRAIN DRUG DEVELOPMENT. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 90-105.	3.4	586
5	TRANSPORT OF METABOLIC SUBSTRATES THROUGH THE BLOOD-BRAIN BARRIER. Journal of Neurochemistry, 1977, 28, 5-12.	2.1	523
6	Capillary Depletion Method for Quantification of Blood?Brain Barrier Transport of Circulating Peptides and Plasma Proteins. Journal of Neurochemistry, 1990, 54, 1882-1888.	2.1	443
7	Transport of Protein-Bound Hormones into Tissues <i>in Vivo </i> *. Endocrine Reviews, 1981, 2, 103-123.	8.9	438
8	Strategies to advance translational research into brain barriers. Lancet Neurology, The, 2008, 7, 84-96.	4.9	432
9	Drug Targeting to the Brain. Pharmaceutical Research, 2007, 24, 1733-1744.	1.7	421
10	Delivery of peptides and proteins through the blood–brain barrier. Advanced Drug Delivery Reviews, 2001, 46, 247-279.	6.6	409
11	Drug and gene targeting to the brain with molecular trojan horses. Nature Reviews Drug Discovery, 2002, 1, 131-139.	21.5	405
12	Blood-brain barrier biology and methodology. Journal of NeuroVirology, 1999, 5, 556-569.	1.0	402
13	Transport of Steroid Hormones through the Rat Blood-Brain Barrier. Journal of Clinical Investigation, 1979, 64, 145-154.	3.9	382
14	CNS Drug Design Based on Principles of Bloodâ€Brain Barrier Transport. Journal of Neurochemistry, 1998, 70, 1781-1792.	2.1	374
15	Drug and Gene Delivery to the Brain. Neuron, 2002, 36, 555-558.	3.8	369
16	Human Blood?Brain Barrier Insulin Receptor. Journal of Neurochemistry, 1985, 44, 1771-1778.	2.1	368
17	Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Research, 1987, 420, 32-38.	1.1	361
18	CSF, blood-brain barrier, and brain drug delivery. Expert Opinion on Drug Delivery, 2016, 13, 963-975.	2.4	356

#	Article	IF	Citations
19	Intravenous RNA Interference Gene Therapy Targeting the Human Epidermal Growth Factor Receptor Prolongs Survival in Intracranial Brain Cancer. Clinical Cancer Research, 2004, 10, 3667-3677.	3.2	317
20	Human blood-brain barrier transferrin receptor. Metabolism: Clinical and Experimental, 1987, 36, 892-895.	1.5	316
21	Receptor-Mediated Peptide Transport through the Blood-Brain Barrier*. Endocrine Reviews, 1986, 7, 314-330.	8.9	293
22	Kinetic analysis of blood-brain barrier transport of amino acids. Biochimica Et Biophysica Acta - Biomembranes, 1975, 401, 128-136.	1.4	292
23	Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharmaceutical Research, 1995, 12, 807-816.	1.7	277
24	KINETICS OF BLOOD-BRAIN BARRIER TRANSPORT OF PYRUVATE, LACTATE AND GLUCOSE IN SUCKLING, WEANLING AND ADULT RATS. Journal of Neurochemistry, 1979, 33, 439-445.	2.1	265
25	Drug Delivery to the Brain. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 713-731.	2.4	262
26	Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochemical Research, 1998, 23, 635-644.	1.6	240
27	Mediated efflux of IgG molecules from brain to blood across the blood–brain barrier. Journal of Neuroimmunology, 2001, 114, 168-172.	1.1	240
28	Transport of small molecules through the blood-brain barrier: biology and methodology. Advanced Drug Delivery Reviews, 1995, 15, 5-36.	6.6	238
29	Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier. Journal of Neurochemistry, 2002, 81, 203-206.	2.1	235
30	Kinetics of blood-brain barrier transport of hexoses. Biochimica Et Biophysica Acta - Biomembranes, 1975, 382, 377-392.	1.4	234
31	Drug transport in brain via the cerebrospinal fluid. Fluids and Barriers of the CNS, 2011, 8, 7.	2.4	231
32	Blood-Brain Barrier and Delivery of Protein and Gene Therapeutics to Brain. Frontiers in Aging Neuroscience, 2019, 11, 373.	1.7	220
33	Synthesis of pegylated immunonanoparticles. Pharmaceutical Research, 2002, 19, 1137-1143.	1.7	206
34	Molecular Trojan horses for blood–brain barrier drug delivery. Current Opinion in Pharmacology, 2006, 6, 494-500.	1.7	205
35	Intravenous Nonviral Gene Therapy Causes Normalization of Striatal Tyrosine Hydroxylase and Reversal of Motor Impairment in Experimental Parkinsonism. Human Gene Therapy, 2003, 14, 1-12.	1.4	201
36	Humanization of anti-human insulin receptor antibody for drug targeting across the human blood–brain barrier. Biotechnology and Bioengineering, 2007, 96, 381-391.	1.7	192

#	Article	IF	Citations
37	4 Serum bioavailability of sex steroid hormones. Clinics in Endocrinology and Metabolism, 1986, 15, 259-278.	1.8	184
38	Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharmaceutical Research, 2000, 17, 266-274.	1.7	181
39	Molecular Biology of the Blood–Brain Barrier. Molecular Biotechnology, 2005, 30, 057-070.	1.3	176
40	Transport of human recombinant brain-derived neurotrophic factor (BDNF) through the rat blood-brain barrier in vivo using vector-mediated peptide drug delivery. Pharmaceutical Research, 1994, 11, 738-746.	1.7	175
41	shRNA and siRNA delivery to the brain. Advanced Drug Delivery Reviews, 2007, 59, 141-152.	6.6	170
42	Neuroprotection in Transient Focal Brain Ischemia After Delayed Intravenous Administration of Brain-Derived Neurotrophic Factor Conjugated to a Blood-Brain Barrier Drug Targeting System. Stroke, 2001, 32, 1378-1384.	1.0	169
43	Global non-viral gene transfer to the primate brain following intravenous administration. Molecular Therapy, 2003, 7, 11-18.	3.7	168
44	Carrier-Mediated Transport of Thyroid Hormones through the Rat Blood-Brain Barrier: Primary Role of Albumin-Bound Hormone*. Endocrinology, 1979, 105, 605-612.	1.4	162
45	Biopharmaceutical drug targeting to the brain. Journal of Drug Targeting, 2010, 18, 157-167.	2.1	162
46	Re-Engineering Biopharmaceuticals for Delivery to Brain with Molecular Trojan Horses. Bioconjugate Chemistry, 2008, 19, 1327-1338.	1.8	160
47	Reengineering Biopharmaceuticals for Targeted Delivery Across the Blood–Brain Barrier. Methods in Enzymology, 2012, 503, 269-292.	0.4	159
48	Conjugation of brain-derived neurotrophic factor to a blood–brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain Research, 2001, 889, 49-56.	1.1	158
49	Human blood-brain barrier insulin-like growth factor receptor. Metabolism: Clinical and Experimental, 1988, 37, 136-140.	1.5	155
50	Alzheimer's disease drug development and the problem of the bloodâ€brain barrier. Alzheimer's and Dementia, 2009, 5, 427-432.	0.4	155
51	Transport of [1251]transferrin through the rat blood-brain barrier. Brain Research, 1995, 683, 164-171.	1.1	153
52	Bloodâ€"Brain Barrier Genomics. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 61-68.	2.4	150
53	Antisense Gene Therapy of Brain Cancer with an Artificial Virus Gene Delivery System. Molecular Therapy, 2002, 6, 67-72.	3.7	147
54	Blood-Brain Barrier: Interface Between Internal Medicine and the Brain. Annals of Internal Medicine, 1986, 105, 82.	2.0	146

#	Article	IF	CITATIONS
55	Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharmaceutical Research, 2001, 18, 1091-1095.	1.7	144
56	Blood–brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Research, 2006, 1111, 227-229.	1,1	141
57	Gene expression of GLUT3 and GLUT1 glucose transporters in human brain tumors. Molecular Brain Research, 1994, 27, 51-57.	2.5	136
58	Rapid transferrin efflux from brain to blood across the blood-brain barrier. Journal of Neurochemistry, 2001, 76, 1597-1600.	2.1	133
59	Vector-mediated drug delivery to the brain. Advanced Drug Delivery Reviews, 1999, 36, 299-321.	6.6	131
60	Engineering and expression of a chimeric transferrin receptor monoclonal antibody for blood–brain barrier delivery in the mouse. Biotechnology and Bioengineering, 2009, 102, 1251-1258.	1.7	130
61	Why is the global CNS pharmaceutical market so under-penetrated?. Drug Discovery Today, 2002, 7, 5-7.	3.2	129
62	Genetic engineering of a lysosomal enzyme fusion protein for targeted delivery across the human bloodâ€brain barrier. Biotechnology and Bioengineering, 2008, 99, 475-484.	1.7	129
63	Palmitate and Cholesterol Transport Through the Blood-Brain Barrier. Journal of Neurochemistry, 1980, 34, 463-466.	2.1	128
64	Combined use of carboxyl-directed protein pegylation and vector-mediated blood-brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor following intravenous administration. Pharmaceutical Research, 1998, 15, 576-582.	1.7	128
65	Brain Microvascular and Astrocyte Localization of Pâ€Glycoprotein. Journal of Neurochemistry, 1997, 68, 1278-1285.	2.1	128
66	Blood–brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opinion on Drug Delivery, 2015, 12, 207-222.	2.4	127
67	Receptor-mediated delivery of an antisense gene to human brain cancer cells. Journal of Gene Medicine, 2002, 4, 183-194.	1.4	125
68	Glucose Deprivation Causes Posttranscriptional Enhancement of Brain Capillary Endothelial Glucose Transporter Gene Expression via GLUT1 mRNA Stabilization. Journal of Neurochemistry, 1993, 60, 2290-2296.	2.1	124
69	Normalization of Striatal Tyrosine Hydroxylase and Reversal of Motor Impairment in Experimental Parkinsonism with Intravenous Nonviral Gene Therapy and a Brain-Specific Promoter. Human Gene Therapy, 2004, 15, 339-350.	1.4	124
70	Enhanced Neuroprotective Effects of Basic Fibroblast Growth Factor in Regional Brain Ischemia after Conjugation to a Blood-Brain Barrier Delivery Vector. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 605-610.	1.3	123
71	Fusion Antibody for Alzheimer's Disease with Bidirectional Transport Across the Bloodâ^'Brain Barrier and Al̂ ² Fibril Disaggregation. Bioconjugate Chemistry, 2007, 18, 447-455.	1.8	121
72	Intravenous siRNA of Brain Cancer with Receptor Targeting and Avidin–Biotin Technology. Pharmaceutical Research, 2007, 24, 2309-2316.	1.7	121

#	Article	IF	Citations
73	Delivery of Biologics Across the Blood–Brain Barrier with Molecular Trojan Horse Technology. BioDrugs, 2017, 31, 503-519.	2.2	121
74	Rapid Sequestration and Degradation of Somatostatin Analogues by Isolated Brain Microvessels. Journal of Neurochemistry, 1985, 44, 1178-1184.	2.1	116
75	The brain-type glucose transporter mRNA is specifically expressed at the blood-brain barrier. Biochemical and Biophysical Research Communications, 1990, 166, 174-179.	1.0	116
76	In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats. Journal of Gene Medicine, 2003, 5, 1039-1045.	1.4	116
77	Restricted Transport of Vitamin D and A Derivatives Through the Rat Blood-Brain Barrier. Journal of Neurochemistry, 1985, 44, 1138-1141.	2.1	114
78	Transport of Propranolol and Lidocaine through the Rat Blood-Brain Barrier. PRIMARY ROLE OF GLOBULIN-BOUND DRUG. Journal of Clinical Investigation, 1983, 71, 900-908.	3.9	111
79	Blood–brain barrier endogenous transporters as therapeutic targets: a new model for small molecule CNS drug discovery. Expert Opinion on Therapeutic Targets, 2015, 19, 1059-1072.	1.5	108
80	Carboxyl-directed pegylation of brain-derived neurotrophic factor markedly reduces systemic clearance with minimal loss of biologic activity., 1997, 14, 1085-1091.		107
81	Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opinion on Biological Therapy, 2004, 4, 1103-1113.	1.4	107
82	Delivery of \hat{l}^2 -Galactosidase to Mouse Brain via the Blood-Brain Barrier Transferrin Receptor. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 1075-1081.	1.3	105
83	Neurocognitive and somatic stabilization in pediatric patients with severe Mucopolysaccharidosis Type I after 52 weeks of intravenous brain-penetrating insulin receptor antibody-iduronidase fusion protein (valanafusp alpha): an open label phase 1-2 trial. Orphanet Journal of Rare Diseases, 2018, 13, 110.	1.2	104
84	Kinetics of Transport and Phosphorylation of 2-Fluoro-2-Deoxy-d-Glucose in Rat Brain. Journal of Neurochemistry, 1983, 40, 160-167.	2.1	102
85	Blood?Brain Barrier Transport of Valproic Acid. Journal of Neurochemistry, 1985, 44, 1541-1550.	2.1	102
86	Transport of Albumin-bound Melatonin Through the Blood-Brain Barrier. Journal of Neurochemistry, 1980, 34, 1761-1763.	2.1	101
87	Pharmacokinetics and Brain Uptake of a Genetically Engineered Bifunctional Fusion Antibody Targeting the Mouse Transferrin Receptor. Molecular Pharmaceutics, 2010, 7, 237-244.	2.3	101
88	Enkephalin and Blood-Brain Barrier: Studies of Binding and Degradation in Isolated Brain Micro vessels*. Endocrinology, 1981, 109, 1138-1143.	1.4	100
89	P-glycoprotein on astrocyte foot processes of unfixed isolated human brain capillaries. Brain Research, 1999, 819, 143-146.	1.1	100
90	The Interaction of Transport and Metabolism on Brain Glucose Utilization: A Reevaluation of the Lumped Constant. Journal of Neurochemistry, 1981, 36, 1601-1604.	2.1	99

#	Article	IF	Citations
91	Kinetics of Regional Blood?Brain Barrier Transport and Brain Phosphorylation of Glucose and 2-Deoxyglucose in the Barbiturate?Anesthetized Rat. Journal of Neurochemistry, 1982, 38, 560-568.	2.1	99
92	Targeting Neurotherapeutic Agents Through the Blood-Brain Barrier. Archives of Neurology, 2002, 59, 35.	4.9	98
93	Targeted delivery of protein and gene medicines through the blood–brain barrier. Clinical Pharmacology and Therapeutics, 2015, 97, 347-361.	2.3	98
94	Restrictive Transport of a Lipid-Soluble Peptide (Cyclosporin) Through the Blood?Brain Barrier. Journal of Neurochemistry, 1985, 45, 1954-1956.	2.1	96
95	Treatment of Alzheimer's Disease and Blood–Brain Barrier Drug Delivery. Pharmaceuticals, 2020, 13, 394.	1.7	92
96	Gene therapy of the brain. Neurology, 2004, 62, 1275-1281.	1.5	91
97	The blood-brain barrier and neurotherapeutics. NeuroRx, 2005, 2, 1-2.	6.0	89
98	Tyrosine hydroxylase replacement in experimental Parkinson's disease with transvascular gene therapy. NeuroRx, 2005, 2, 129-138.	6.0	88
99	Selective targeting of a TNFR decoy receptor pharmaceutical to the primate brain as a receptor-specific IgG fusion protein. Journal of Biotechnology, 2010, 146, 84-91.	1.9	88
100	Brain Protection from Stroke with Intravenous TNF $\langle i \rangle \hat{i} \pm \langle j \rangle$ Decoy Receptor-Trojan Horse Fusion Protein. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1933-1938.	2.4	88
101	Insulin receptor antibodyâ€iduronate 2â€sulfatase fusion protein: Pharmacokinetics, antiâ€drug antibody, and safety pharmacology in Rhesus monkeys. Biotechnology and Bioengineering, 2014, 111, 2317-2325.	1.7	88
102	Intravenous glialâ€derived neurotrophic factor gene therapy of experimental Parkinson's disease with Trojan horse liposomes and a tyrosine hydroxylase promoter. Journal of Gene Medicine, 2008, 10, 306-315.	1.4	86
103	GDNF fusion protein for targetedâ€drug delivery across the human blood–brain barrier. Biotechnology and Bioengineering, 2008, 100, 387-396.	1.7	86
104	Log(BB), PS products and in silico models of drug brain penetration. Drug Discovery Today, 2004, 9, 392-393.	3.2	85
105	Bloodâ€"Brain Barrier Transport of Butanol and Water Relative to <i>N</i> -lsopropyl- <i>p</i> -lodoamphetamine as the Internal Reference. Journal of Cerebral Blood Flow and Metabolism, 1985, 5, 275-281.	2.4	84
106	Pharmacokinetics and Delivery of Tat and Tat-Protein Conjugates to Tissues in Vivo. Bioconjugate Chemistry, 2001, 12, 995-999.	1.8	84
107	hnRNP A2 and hnRNP L Bind the 3′UTR of Glucose Transporter 1 mRNA and Exist as a Complex in Vivo. Biochemical and Biophysical Research Communications, 1999, 261, 646-651.	1.0	83
108	Up-Regulation of Blood-Brain Barrier Short-Form Leptin Receptor Gene Products in Rats Fed a High Fat Diet. Journal of Neurochemistry, 2002, 71, 1761-1764.	2.1	81

#	Article	IF	CITATIONS
109	Genetic engineering, expression, and activity of a fusion protein of a human neurotrophin and a molecular Trojan horse for delivery across the human blood–brain barrier. Biotechnology and Bioengineering, 2007, 97, 1376-1386.	1.7	80
110	Influx of Thyroid Hormones into Rat Liver In Vivo. Journal of Clinical Investigation, 1980, 66, 367-374.	3.9	80
111	Drug Targeting of Erythropoietin Across the Primate Blood-Brain Barrier with an IgG Molecular Trojan Horse. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 961-969.	1.3	79
112	Immunohistochemical study of cerebral amyloid angiopathy. III. Widespread alzheimer A4 peptide in cerebral microvessel walls colocalizes with gamma trace in patients with leukoencephalopathy. Annals of Neurology, 1990, 28, 34-42.	2.8	78
113	Blood-brain barrier transport of reduced folic acid. Pharmaceutical Research, 1999, 16, 415-419.	1.7	78
114	Blood–brain barrier delivery of protein and non-viral gene therapeutics with molecular Trojan horses. Journal of Controlled Release, 2007, 122, 345-348.	4.8	78
115	Imaging Brain Amyloid of Alzheimer Disease in Vivo in Transgenic Mice with an AÎ ² Peptide Radiopharmaceutical. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 223-231.	2.4	77
116	Chimeric peptides as a vehicle for peptide pharmaceutical delivery through the blood-brain barrier. Biochemical and Biophysical Research Communications, 1987, 146, 307-313.	1.0	76
117	Transport of Tryptophan into Brain from the Circulating, Albumin-Bound Pool in Rats and in Rabbits. Journal of Neurochemistry, 1990, 54, 971-976.	2.1	75
118	Molecular cloning of the bovine blood-brain barrier glucose transporter cDNA and demonstration of phylogenetic conservation of the $5\hat{a}$ e-untranslated region. Molecular and Cellular Neurosciences, 1990, 1, 224-232.	1.0	75
119	Enhanced cellular uptake of biotinylated antisense oligonucleotide or peptide mediated by avidin, a cationic protein. FEBS Letters, 1991, 288, 30-32.	1.3	75
120	Blood–Brain Barrier Penetrating Biologic TNF-α Inhibitor for Alzheimer's Disease. Molecular Pharmaceutics, 2017, 14, 2340-2349.	2.3	75
121	Cloned Blood–Brain Barrier Adenosine Transporter is Identical to the Rat Concentrative Na+ Nucleoside Cotransporter CNT2. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 929-936.	2.4	74
122	Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Molecular Vision, 2003, 9, 465-72.	1.1	73
123	Astrocyte Growth Stimulation by a Soluble Factor Produced by Cerebral Endothelial Cellsin vitro. Journal of Neuropathology and Experimental Neurology, 1990, 49, 539-549.	0.9	72
124	Monoclonal Antibody Radiopharmaceuticals:  Cationization, Pegylation, Radiometal Chelation, Pharmacokinetics, and Tumor Imaging. Bioconjugate Chemistry, 2003, 14, 546-553.	1.8	72
125	Crossing the blood–brain barrier: are we getting it right?. Drug Discovery Today, 2001, 6, 1-2.	3.2	71
126	Amyloid Angiopathy of Alzheimer's Disease: Amino Acid Composition and Partial Sequence of a 4,200-Dalton Peptide Isolated from Cortical Microvessels. Journal of Neurochemistry, 1987, 49, 1394-1401.	2.1	70

#	Article	IF	Citations
127	Î ² Endorphin Chimeric Peptides: Transport through the Blood-Brain Barrier (i>in Vivo (i>and Cleavage of Bisulfide Linkage by Brain*. Endocrinology, 1990, 126, 977-984.	1.4	70
128	Carotid Artery Injection Technique: Bounds for Bolus Mixing by Plasma and by Brain. Journal of Cerebral Blood Flow and Metabolism, 1985, 5, 576-583.	2.4	69
129	Transport of Insulin-Related Peptides and Glucose across the Blood-Brain Barrier. Annals of the New York Academy of Sciences, 1993, 692, 126-137.	1.8	69
130	Epidermal Growth Factor Radiopharmaceuticals:Â111In Chelation, Conjugation to a Blood-Brain Barrier Delivery Vector via a Biotin-Polyethylene Linker, Pharacokinetics, and in Vivo Imaging of Experimental Brain Tumors. Bioconjugate Chemistry, 1999, 10, 502-511.	1.8	69
131	Brain microvascular P-glycoprotein and a revised model of multidrug resistance in brain. Cellular and Molecular Neurobiology, 2000, 20, 165-181.	1.7	69
132	Blood?Brain Barrier Protein and Phosphorylation and Dephosphorylation. Journal of Neurochemistry, 1985, 45, 1141-1147.	2.1	68
133	A One-Step Procedure for Isolation of Poly(A)+mRNA from Isolated Brain Capillaries and Endothelial Cells in Culture. Journal of Neurochemistry, 1991, 57, 2136-2139.	2.1	68
134	Glucose deprivation and hypoxia increase the expression of the GLUT1 glucose transporter via a specific mRNA cis-acting regulatory element. Journal of Neurochemistry, 2002, 80, 552-554.	2.1	68
135	Examination of Bloodâ€Brain Barrier Transferrin Receptor by Confocal Fluorescent Microscopy of Unfixed Isolated Rat Brain Capillaries. Journal of Neurochemistry, 1998, 70, 883-886.	2.1	68
136	Enhanced Hepatic Extraction of Estrogens Used for Replacement Therapy*. Journal of Clinical Endocrinology and Metabolism, 1986, 62, 761-766.	1.8	67
137	Pathological upregulation of inner blood-retinal barrier Glut1 glucose transporter expression in diabetes mellitus. Brain Research, 1996, 706, 313-317.	1.1	67
138	Non-invasive drug delivery to the human brain using endogenous blood–brain barrier transport systems. Pharmaceutical Science & Technology Today, 1999, 2, 49-59.	0.7	67
139	Reversal of Lysosomal Storage in Brain of Adult MPS-I Mice with Intravenous Trojan Horse-Iduronidase Fusion Protein. Molecular Pharmaceutics, 2011, 8, 1342-1350.	2.3	67
140	An Electron Microscopic Immunogold Analysis of Developmental Up-Regulation of the Blood—Brain Barrier GLUT1 Glucose Transporter. Journal of Cerebral Blood Flow and Metabolism, 1993, 13, 841-854.	2.4	66
141	The Trojan Horse Liposome Technology for Nonviral Gene Transfer across the Blood-Brain Barrier. Journal of Drug Delivery, 2011, 2011, 1-12.	2.5	65
142	A Historical Review of Brain Drug Delivery. Pharmaceutics, 2022, 14, 1283.	2.0	65
143	BBB-Genomics: creating new openings for brain-drug targeting. Drug Discovery Today, 2001, 6, 381-383.	3.2	64
144	Near Complete Rescue of Experimental Parkinson's Disease with Intravenous, Non-viral GDNF Gene Therapy. Pharmaceutical Research, 2009, 26, 1059-1063.	1.7	64

#	Article	IF	CITATIONS
145	Brain and Organ Uptake in the Rhesus Monkey in Vivo of Recombinant Iduronidase Compared to an Insulin Receptor Antibody–Iduronidase Fusion Protein. Molecular Pharmaceutics, 2017, 14, 1271-1277.	2.3	64
146	Kinetics of Neutral Amino Acid Transport Through the Blood-Brain Barrier of the Newborn Rabbit. Journal of Neurochemistry, 1982, 38, 955-962.	2.1	63
147	Blood-brain barrier transport of 125I-labeled basic fibroblast growth factor. Pharmaceutical Research, 2000, 17, 63-69.	1.7	62
148	Nomogram for 2-Deoxyglucose Lumped Constant for Rat Brain Cortex. Journal of Cerebral Blood Flow and Metabolism, 1982, 2, 197-202.	2.4	61
149	Drug Delivery of Antisense Molecules to the Brain for Treatment of Alzheimer's Disease and Cerebral AIDS. Journal of Pharmaceutical Sciences, 1998, 87, 1308-1315.	1.6	61
150	P-glycoprotein and caveolin- $1\hat{l}_{\pm}$ in endothelium and astrocytes of primate brain. NeuroReport, 2003, 14, 2041-2046.	0.6	61
151	Antibody-Mediated Targeting of siRNA via the Human Insulin Receptor Using Avidinâ^Biotin Technology. Molecular Pharmaceutics, 2009, 6, 747-751.	2.3	61
152	Comparison of Blood-Brain Barrier Transport of Glial-Derived Neurotrophic Factor (GDNF) and an IgG-GDNF Fusion Protein in the Rhesus Monkey. Drug Metabolism and Disposition, 2009, 37, 2299-2304.	1.7	60
153	Blood-Brain Barrier Drug Targeting Enables Neuroprotection in Brain Ischemia Following Delayed Intravenous Administration of Neurotrophins. Advances in Experimental Medicine and Biology, 2003, 513, 397-430.	0.8	60
154	Blood-Brain Barrier Molecular Trojan Horse Enables Imaging of Brain Uptake of Radioiodinated Recombinant Protein in the Rhesus Monkey. Bioconjugate Chemistry, 2013, 24, 1741-1749.	1.8	59
155	Pharmacokinetics and brain uptake in the rhesus monkey of a fusion protein of arylsulfatase a and a monoclonal antibody against the human insulin receptor. Biotechnology and Bioengineering, 2013, 110, 1456-1465.	1.7	59
156	Vascular Genomics of the Human Brain. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 245-252.	2.4	58
157	Insulin Receptor Antibody–Sulfamidase Fusion Protein Penetrates the Primate Blood–Brain Barrier and Reduces Glycosoaminoglycans in Sanfilippo Type A Cells. Molecular Pharmaceutics, 2014, 11, 2928-2934.	2.3	58
158	Influx of Testosterone-Binding Globulin (TeBG) and TeBG-Bound Sex Steroid Hormones Into Rat Testis and Prostate*. Journal of Clinical Endocrinology and Metabolism, 1988, 67, 98-103.	1.8	57
159	Recent Developments in Peptide Drug Delivery to the Brain. Basic and Clinical Pharmacology and Toxicology, 1992, 71, 3-10.	0.0	57
160	Absence of Toxicity of Chronic Weekly Intravenous Gene Therapy with Pegylated Immunoliposomes. Pharmaceutical Research, 2003, 20, 1779-1785.	1.7	57
161	Neuroprotection with a Brain-Penetrating Biologic Tumor Necrosis Factor Inhibitor. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 618-623.	1.3	57
162	Intravenous treatment of experimental Parkinson's disease in the mouse with an IgG-GDNF fusion protein that penetrates the blood–brain barrier. Brain Research, 2010, 1352, 208-213.	1.1	56

#	Article	IF	CITATIONS
163	Blood-brain barrier glucose transporter mRNA is increased in experimental diabetes mellitus. Biochemical and Biophysical Research Communications, 1989, 164, 375-380.	1.0	55
164	Ten nucleotide cis element in the $3\hat{a}\in^2$ -untranslated region of the GLUT1 glucose transporter mRNA increases gene expression via mRNA stabilization. Molecular Brain Research, 1998, 59, 109-113.	2.5	55
165	Antibodies to Bloodâ€"Brain Barrier Bind Selectively to Brain Capillary Endothelial Lateral Membranes and to a 46K Protein. Journal of Cerebral Blood Flow and Metabolism, 1986, 6, 203-211.	2.4	53
166	Determination of in vivo steady-state unbound drug concentration in the brain interstitial fluid by microdialysis. International Journal of Pharmaceutics, 1992, 81, 143-152.	2.6	51
167	Brain Drug Targeting and Gene Technologies. The Japanese Journal of Pharmacology, 2001, 87, 97-103.	1.2	51
168	Pharmacokinetics and Brain Uptake of Biotinylated Basic Fibroblast Growth Factor Conjugated to a Blood-Brain Barrier Drug Delivery System. Journal of Drug Targeting, 2002, 10, 239-245.	2.1	51
169	Differential glycosylation of the GLUT1 glucose transporter in brain capillaries and choroid plexus. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1193, 24-30.	1.4	50
170	Subtractive Expression Cloning Reveals High Expression of CD46 at the Blood-Brain Barrier. Journal of Neuropathology and Experimental Neurology, 2002, 61, 597-604.	0.9	50
171	Brain Drug Development and Brain Drug Targeting. Pharmaceutical Research, 2007, 24, 1729-1732.	1.7	50
172	Lysosomal Enzyme Replacement of the Brain with Intravenous Non-Viral Gene Transfer. Pharmaceutical Research, 2008, 25, 400-406.	1.7	50
173	AGT-181: Expression in CHO cells and pharmacokinetics, safety, and plasma iduronidase enzyme activity in Rhesus monkeys. Journal of Biotechnology, 2009, 144, 135-141.	1.9	50
174	Low blood–brain barrier permeability to azidothymidine (AZT), 3TC™, and thymidine in the rat. Brain Research, 1998, 791, 313-316.	1.1	49
175	Disaggregation of Amyloid Plaque in Brain of Alzheimer's Disease Transgenic Mice with Daily Subcutaneous Administration of a Tetravalent Bispecific Antibody That Targets the Transferrin Receptor and the Abeta Amyloid Peptide. Molecular Pharmaceutics, 2013, 10, 3507-3513.	2.3	49
176	Re-engineering therapeutic antibodies for Alzheimer's disease as blood-brain barrier penetrating bi-specific antibodies. Expert Opinion on Biological Therapy, 2016, 16, 1455-1468.	1.4	49
177	Enhanced cellular uptake and in vivo biodistribution of a monoclonal antibody following cationization. Journal of Pharmaceutical Sciences, 1995, 84, 943-948.	1.6	48
178	${\rm A\hat{l}^21}$ -40Peptide Radiopharmaceuticals for Brain Amyloid Imaging: ${\rm \hat{A}111In}$ Chelation, Conjugation to Poly(ethylene glycol)-Biotin Linkers, and Autoradiography with Alzheimer's Disease Brain Sections. Bioconjugate Chemistry, 2000, 11, 380-386.	1.8	48
179	Marked enhancement in gene expression by targeting the human insulin receptor. Journal of Gene Medicine, 2003, 5, 157-163.	1.4	48
180	Selective Delivery of Sex Steroid Hormones to Tissues In Vivo by Albumin and by Sex Hormone-Binding Globulin. Annals of the New York Academy of Sciences, 1988, 538, 173-192.	1.8	47

#	Article	IF	Citations
181	BLOOD-BRAIN BARRIER TRANSPORT OF NUTRIENTS. Nutrition Reviews, 2009, 44, 15-25.	2.6	47
182	Imaging endogenous gene expression in brain cancer in vivo with 111In-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology. Journal of Nuclear Medicine, 2004, 45, 1766-75.	2.8	47
183	In Vivo Cleavability of a Disulfide-Based Chimeric Opioid Peptide in Rat Brain. Bioconjugate Chemistry, 1995, 6, 211-218.	1.8	46
184	Gene Targeting In Vivo with Pegylated Immunoliposomes. Methods in Enzymology, 2003, 373, 507-528.	0.4	46
185	Glycemic Control and Chronic Dosing of Rhesus Monkeys with a Fusion Protein of Iduronidase and a Monoclonal Antibody Against the Human Insulin Receptor. Drug Metabolism and Disposition, 2012, 40, 2021-2025.	1.7	46
186	Blood-Brain Barrier Transport, Plasma Pharmacokinetics, and Neuropathology Following Chronic Treatment of the Rhesus Monkey with a Brain Penetrating Humanized Monoclonal Antibody Against the Human Transferrin Receptor. Molecular Pharmaceutics, 2018, 15, 5207-5216.	2.3	46
187	Enhanced expression of the blood-brain barrier GLUT1 glucose transporter gene by brain-derived factors. Molecular Brain Research, 1994, 22, 259-267.	2.5	45
188	Drug and gene targeting to the brain via blood–brain barrier receptor-mediated transport systems. International Congress Series, 2005, 1277, 49-62.	0.2	45
189	Pharmacokinetics and Safety in Rhesus Monkeys of a Monoclonal Antibody-GDNF Fusion Protein for Targeted Blood-Brain Barrier Delivery. Pharmaceutical Research, 2009, 26, 2227-2236.	1.7	45
190	Imaging gene expression in the brain in vivo in a transgenic mouse model of Huntington's disease with an antisense radiopharmaceutical and drug-targeting technology. Journal of Nuclear Medicine, 2002, 43, 948-56.	2.8	45
191	Kinetics of Regional Blood-Brain Barrier Glucose Transport and Cerebral Blood Flow Determined with the Carotid Injection Technique in Conscious Rats. Journal of Neurochemistry, 1985, 44, 911-915.	2.1	44
192	Molecular Trojan horses for blood-brain barrier drug delivery. Discovery Medicine, 2006, 6, 139-43.	0.5	43
193	Brain Penetrating Bifunctional Erythropoietin–Transferrin Receptor Antibody Fusion Protein for Alzheimer's Disease. Molecular Pharmaceutics, 2018, 15, 4963-4973.	2.3	42
194	Immunohistochemical study of cerebral amyloid angiopathy: Use of an antiserum to a synthetic 28-amino-acid peptide fragment of the Alzheimer's disease amyloid precursor. Human Pathology, 1988, 19, 214-222.	1.1	41
195	Vector-mediated peptide drug delivery to the brain. Advanced Drug Delivery Reviews, 1995, 15, 109-146.	6.6	41
196	Retention of Biologic Activity of Human Epidermal Growth Factor Following Conjugation to a Blood-Brain Barrier Drug Delivery Vector via an Extended Poly(ethylene glycol) Linker. Bioconjugate Chemistry, 1999, 10, 32-37.	1.8	41
197	<i>Cis</i> â€Element/Cytoplasmic Protein Interaction Within the 3′â€Untranslated Region of the GLUT1 Glucose Transporter mRNA. Journal of Neurochemistry, 1996, 66, 449-458.	2.1	41
198	Monoclonal Antibody-Glial-Derived Neurotrophic Factor Fusion Protein Penetrates the Blood-Brain Barrier in the Mouse. Drug Metabolism and Disposition, 2010, 38, 566-572.	1.7	41

#	Article	IF	CITATIONS
199	Receptor-Mediated Abeta Amyloid Antibody Targeting to Alzheimer's Disease Mouse Brain. Molecular Pharmaceutics, 2011, 8, 280-285.	2.3	41
200	Brain delivery of biotin bound to a conjugate of neutral avidin and cationized human albumin. Pharmaceutical Research, 1994, 11, 1257-1264.	1.7	40
201	Blood-Brain Barrier Genomics. Stroke, 2007, 38, 686-690.	1.0	40
202	Chronic Dosing of Mice with a Transferrin Receptor Monoclonal Antibody-Glial-Derived Neurotrophic Factor Fusion Protein. Drug Metabolism and Disposition, 2011, 39, 1149-1154.	1.7	40
203	Brain-Penetrating IgG-Iduronate 2-Sulfatase Fusion Protein for the Mouse. Drug Metabolism and Disposition, 2012, 40, 329-335.	1.7	40
204	Protein-Bound Corticosteroid in Human Serum Is Selectively Transported into Rat Brain and Liver in Vivo*. Journal of Clinical Endocrinology and Metabolism, 1983, 57, 160-165.	1.8	39
205	Pharmacokinetics of [3H]Biotin Bound to Different Avidin Analogues. Journal of Drug Targeting, 1995, 3, 159-165.	2.1	39
206	Pharmacokinetics and Brain Uptake of an IgG-TNF Decoy Receptor Fusion Protein Following Intravenous, Intraperitoneal, and Subcutaneous Administration in Mice. Molecular Pharmaceutics, 2013, 10, 1425-1431.	2.3	39
207	Bloodâ€"Brain Barrier Genomics and Cloning of a Novel Organic Anion Transporter. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 291-301.	2.4	38
208	Genetic Engineering, Expression, and Activity of a Chimeric Monoclonal Antibodyâ ⁻ 'Avidin Fusion Protein for Receptor-Mediated Delivery of Biotinylated Drugs in Humans. Bioconjugate Chemistry, 2008, 19, 731-739.	1.8	38
209	IgGâ€single chain Fv fusion protein therapeutic for alzheimer's disease: Expression in CHO cells and pharmacokinetics and brain delivery in the rhesus monkey. Biotechnology and Bioengineering, 2010, 105, 627-635.	1.7	38
210	Insulin Receptor Antibodyâ^'α-N-Acetylglucosaminidase Fusion Protein Penetrates the Primate Blood–Brain Barrier and Reduces Glycosoaminoglycans in Sanfilippo Type B Fibroblasts. Molecular Pharmaceutics, 2016, 13, 1385-1392.	2.3	38
211	Delivery of peptides and proteins through the blood-brain barrier. Advanced Drug Delivery Reviews, 1993, 10, 205-245.	6.6	37
212	Genetic Engineering of a Bifunctional IgG Fusion Protein with Iduronate-2-Sulfatase. Bioconjugate Chemistry, 2010, 21, 151-156.	1.8	37
213	Brain-Penetrating Tumor Necrosis Factor Decoy Receptor in the Mouse. Drug Metabolism and Disposition, 2011, 39, 71-76.	1.7	36
214	New approaches to drug delivery through the blood-brain barrier. Trends in Biotechnology, 1994, 12, 239-245.	4.9	35
215	Enzymatic barrier protects brain capillaries from leukotriene C4. Journal of Neurosurgery, 1994, 81, 745-751.	0.9	35
216	Blood–brain barrier amino acid transport. , 1998, , 188-197.		35

#	Article	IF	CITATIONS
217	Re-Engineering Erythropoietin as an IgG Fusion Protein That Penetrates the Bloodâ^'Brain Barrier in the Mouse. Molecular Pharmaceutics, 2010, 7, 2148-2155.	2.3	35
218	Brain penetrating IgG-erythropoietin fusion protein is neuroprotective following intravenous treatment in Parkinson's disease in the mouse. Brain Research, 2011, 1382, 315-320.	1.1	35
219	Neurotrophins, neuroprotection and the blood-brain barrier. Current Opinion in Investigational Drugs, 2002, 3, 1753-7.	2.3	35
220	Brain Capillary 46,000 Dalton Protein is Cytoplasmic Actin and is Localized to Endothelial Plasma Membrane. Journal of Cerebral Blood Flow and Metabolism, 1989, 9, 675-680.	2.4	34
221	Rat Blood–Brain Barrier Genomics. II. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1319-1326.	2.4	34
222	Expression in CHO cells and pharmacokinetics and brain uptake in the Rhesus monkey of an IgGâ€iduronateâ€2â€sulfatase fusion protein. Biotechnology and Bioengineering, 2011, 108, 1954-1964.	1.7	34
223	Plasma Pharmacokinetics of Valanafusp Alpha, a Human Insulin Receptor Antibody-Iduronidase Fusion Protein, in Patients with Mucopolysaccharidosis Type I. BioDrugs, 2018, 32, 169-176.	2.2	34
224	Complete protection of antisense oligonucleotides against serum nuclease degradation by an avidin-biotin system. Bioconjugate Chemistry, 1992, 3, 519-523.	1.8	33
225	Blood-Brain Barrier Disruption Following the Internal Carotid Arterial Perfusion of Alkyl Glycerols. Journal of Drug Targeting, 2002, 10, 463-467.	2.1	32
226	Transport of Thyroid and Steroid Hormones through the Blood-Brain Barrier of the Newborn Rabbit: Primary Role of Protein-Bound Hormone*. Endocrinology, 1980, 107, 1705-1710.	1.4	31
227	The Effect of Membrane Permeability and Binding by Human Serum Proteins on Sex Steroid Influx into the Uterus*. Journal of Clinical Endocrinology and Metabolism, 1983, 56, 1282-1287.	1.8	31
228	Two-Day Starvation Does Not Alter the Kinetics of Blood-Brain Barrier Transport and Phosphorylation of Glucose in Rat Brain. Journal of Cerebral Blood Flow and Metabolism, 1985, 5, 40-46.	2.4	31
229	Serum Bioavailability and Tissue Metabolism of Testosterone and Estradiol in Rat Salivary Gland*. Journal of Clinical Endocrinology and Metabolism, 1986, 63, 20-28.	1.8	31
230	Brain drug delivery and blood–Brain barrier transport. Drug Delivery, 1993, 1, 83-101.	2.5	31
231	Development and in vitro Characterization of a Cationized Monoclonal Antibody against \hat{l}^2 A4 Protein: A Potential Probe for Alzheimer's Disease. Bioconjugate Chemistry, 1994, 5, 119-125.	1.8	31
232	Genetic engineering of IgG-glucuronidase fusion proteins. Journal of Drug Targeting, 2010, 18, 205-211.	2.1	31
233	Neuroprotection in stroke in the mouse with intravenous erythropoietin–Trojan horse fusion protein. Brain Research, 2011, 1369, 203-207.	1.1	31
234	Reduction in Brain Heparan Sulfate with Systemic Administration of an IgG Trojan Horse–Sulfamidase Fusion Protein in the Mucopolysaccharidosis Type IIIA Mouse. Molecular Pharmaceutics, 2018, 15, 602-608.	2.3	31

#	Article	IF	Citations
235	The Isolated Brain Microvessel: A Versatile Experimental Model of the Blood-Brain Barrier. Frontiers in Physiology, 2020, 11, 398.	1.3	31
236	Complete Inactivation of Target mRNA by Biotinylated Antisense Oligodeoxynucleotide-Avidin Conjugates. Bioconjugate Chemistry, 1994, 5, 406-410.	1.8	30
237	Organ-specific expression of the lacZ gene controlled by the opsin promoter after intravenous gene administration in adult mice. Journal of Gene Medicine, 2004, 6, 906-912.	1.4	30
238	Measurement of Bloodâ€Brain Barrier GLUT1 Glucose Transporter and Actin mRNA by a Quantitative Polymerase Chain Reaction Assay. Journal of Neurochemistry, 1994, 62, 2085-2090.	2.1	30
239	Biologic TNFα-inhibitors that cross the human blood-brain barrier. Bioengineered Bugs, 2010, 1, 233-236.	2.0	30
240	lgG-Enzyme Fusion Protein: Pharmacokinetics and Anti-Drug Antibody Response in Rhesus Monkeys. Bioconjugate Chemistry, 2013, 24, 97-104.	1.8	30
241	Widespread expression of an exogenous gene in the eye after intravenous administration. Investigative Ophthalmology and Visual Science, 2002, 43, 3075-80.	3.3	30
242	High molecular weight Alzheimer's disease amyloid peptide immunoreactivity in human serum and CSF is an immunoglobulin G. Biochemical and Biophysical Research Communications, 1987, 145, 241-248.	1.0	29
243	Insulin therapy normalizes GLUT1 glucose transporter mRNA but not immunoreactive transporter protein in streptozocin-diabetic rats. Metabolism: Clinical and Experimental, 1993, 42, 939-944.	1.5	29
244	Cationization of a monoclonal antibody to the human immunodeficiency virus REV protein enhances cellular uptake but does not impair antigen binding of the antibody. Immunology Letters, 1994, 42, 191-195.	1.1	29
245	Hypoxia induces deâ€stabilization of the LAT1 large neutral amino acid transporter mRNA in brain capillary endothelial cells. Journal of Neurochemistry, 2003, 85, 1037-1042.	2.1	29
246	Preparation of Trojan Horse Liposomes (THLs) for Gene Transfer across the Blood-Brain Barrier. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5407.	0.2	29
247	Increased Bloodâ€"Brain Barrier Transport of Protein-Bound Anticonvulsant Drugs in the Newborn. Journal of Cerebral Blood Flow and Metabolism, 1983, 3, 280-286.	2.4	28
248	Vascular Proteomics and Subtractive Antibody Expression Cloning. Molecular and Cellular Proteomics, 2002, 1, 75-82.	2.5	28
249	Delivery of a Peptide Radiopharmaceutical to Brain with an IgG-Avidin Fusion Protein. Bioconjugate Chemistry, 2011, 22, 1611-1618.	1.8	28
250	Combination stroke therapy in the mouse with blood–brain barrier penetrating IgG–GDNF and IgG–TNF decoy receptor fusion proteins. Brain Research, 2013, 1507, 91-96.	1.1	28
251	Site-directed mutagenesis of cysteine residues of large neutral amino acid transporter LAT1. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1715, 104-110.	1.4	27
252	Mechanisms of Neuropeptide Interaction with the Blood-Brain Barrier. Annals of the New York Academy of Sciences, 1986, 481, 231-249.	1.8	26

#	Article	IF	CITATIONS
253	Evidence for Translational Control Elements Within the 5′-Untranslated Region of GLUT1 Glucose Transporter mRNA. Journal of Neurochemistry, 2002, 67, 1335-1343.	2.1	26
254	Tumor Necrosis Factor Receptor-IgG Fusion Protein for Targeted Drug Delivery across the Human Bloodâ^'Brain Barrier. Molecular Pharmaceutics, 2009, 6, 1536-1543.	2.3	26
255	Blood-Brain Barrier Transport of Glucose, Free Fatty Acids, and Ketone Bodies. Advances in Experimental Medicine and Biology, 1991, 291, 43-53.	0.8	26
256	Inorganic mercury: selective effects on blood-brain barrier transport systems. Journal of Neurochemistry, 1976, 27, 333-335.	2.1	25
257	Measurement of Cerebral Glucose Utilization Using Washout After Carotid Injection in the Rat. Journal of Neurochemistry, 1982, 38, 1413-1418.	2.1	25
258	Critical Illness and Low Testosterone: Effects of Human Serum on Testosterone Transport into Rat Brain and Liver*. Journal of Clinical Endocrinology and Metabolism, 1983, 56, 710-714.	1.8	25
259	Selective plasma pharmacokinetics and brain uptake in the mouse of enzyme fusion proteins derived from species-specific receptor-targeted antibodies. Journal of Drug Targeting, 2012, 20, 715-719.	2.1	25
260	Glucose transport and phosphorylation: Which is rate limiting for brain glucose utilization?. Annals of Neurology, 1994, 35, 511-512.	2.8	24
261	Brain drug delivery and blood–brain barrier transport. Drug Delivery, 1996, 3, 99-115.	2.5	24
262	Molecular Biology of the Blood–Brain Barrier. , 2003, 89, 385-400.		24
263	Mathematical Models of Blood-Brain Barrier Transport of Monoclonal Antibodies Targeting the Transferrin Receptor and the Insulin Receptor. Pharmaceuticals, 2021, 14, 535.	1.7	24
264	Glucose and amino acid metabolism in an established line of skeletal muscle cells. Journal of Cellular Physiology, 1978, 96, 309-317.	2.0	23
265	The Blood-Brain Barrier in Alzheimer's Disease. Canadian Journal of Neurological Sciences, 1986, 13, 446-448.	0.3	22
266	Measurement of Free Intracellular and Transfer RNA Amino Acid Specific Activity and Protein Synthesis in Rat Brain in vivo. Journal of Cerebral Blood Flow and Metabolism, 1990, 10, 162-169.	2.4	22
267	Decline in Exogenous Gene Expression in Primate Brain Following Intravenous Administration Is Due to Plasmid Degradation. Pharmaceutical Research, 2006, 23, 1586-1590.	1.7	22
268	lgG-Paraoxonase-1 Fusion Protein for Targeted Drug Delivery across the Human Bloodâ^'Brain Barrier. Molecular Pharmaceutics, 2008, 5, 1037-1043.	2.3	22
269	Plasmid DNA gene therapy of the Niemann-Pick C1 mouse with transferrin receptor-targeted Trojan horse liposomes. Scientific Reports, 2020, 10, 13334.	1.6	22
270	Chapter 31. Strategies for Delivery of Drugs Through the Blood-Brain Barrier. Annual Reports in Medicinal Chemistry, 1985, 20, 305-313.	0.5	21

#	Article	IF	CITATIONS
271	GLUT1 glucose transporter: differential gene transcription and mRNA binding to cytosolic and polysome proteins in brain and peripheral tissues. Molecular Brain Research, 1998, 58, 170-177.	2.5	21
272	The Ro52/SS-A autoantigen has elevated expression at the brain microvasculature. NeuroReport, 2003, 14, 1861-1865.	0.6	21
273	Comparison of cDNA and genomic forms of tyrosine hydroxylase gene therapy of the brain with Trojan horse liposomes. Journal of Gene Medicine, 2007, 9, 605-612.	1.4	21
274	Blood-brain barrier delivery for lysosomal storage disorders with IgG-lysosomal enzyme fusion proteins. Advanced Drug Delivery Reviews, 2022, 184, 114234.	6.6	21
275	Site-directed mutagenesis of rabbit LAT1 at amino acids 219 and 234. Journal of Neurochemistry, 2003, 84, 1322-1331.	2.1	20
276	Brain Delivery of Nanomedicines: Trojan Horse Liposomes for Plasmid DNA Gene Therapy of the Brain. Frontiers in Medical Technology, 2020, 2, 602236.	1.3	20
277	Kinetics of Blood–Brain Barrier Transport of Monoclonal Antibodies Targeting the Insulin Receptor and the Transferrin Receptor. Pharmaceuticals, 2022, 15, 3.	1.7	20
278	Enhanced GLUT1 glucose transporter and cytoskeleton gene expression in cultured bovine brain capillary endothelial cells after treatment with phorbol esters and serum. Molecular Brain Research, 1992, 15, 221-226.	2.5	19
279	Drug delivery of antisense oligonucleotides or peptides to tissues <i>in vivo</i> using an avidin–biotin system. Drug Delivery, 1993, 1, 43-50.	2.5	19
280	Neuroprotection in experimental stroke in the rat with an IgG–erythropoietin fusion protein. Brain Research, 2010, 1360, 193-197.	1.1	19
281	Alzheimer's disease: future drug development and the blood-brain barrier. Expert Opinion on Investigational Drugs, 2019, 28, 569-572.	1.9	19
282	Regional blood-brain barrier transport of the steroid hormones. Journal of Neurochemistry, 1979, 33, 579-581.	2.1	18
283	Does the brain's gatekeeper falter in aging?. Neurobiology of Aging, 1988, 9, 44-46.	1.5	18
284	Differential expression of 53- and 45-kDa brain capillary-specific proteins by brain capillary endothelium and choroid plexus in vivo and by brain capillary endothelium in tissue culture. Molecular and Cellular Neurosciences, 1990, 1, 20-28.	1.0	18
285	Drug Targeting to the Brain Using Avidin-Biotin Technology in the Mouse (Blood-Brain Barrier,) Tj ETQq1 1 0.7843	14 rgBT / 2.1	Overlock 10 18
286	Bi-functional IgG-lysosomal enzyme fusion proteins for brain drug delivery. Scientific Reports, 2019, 9, 18632.	1.6	18
287	Blood–brain barrier methodology and biology. , 1998, , 1-8.		18
288	CHO cell expression, longâ€term stability, and primate pharmacokinetics and brain uptake of an IgGâ€"paroxonaseâ€1 fusion protein. Biotechnology and Bioengineering, 2011, 108, 186-196.	1.7	17

#	Article	IF	CITATIONS
289	Imaging Amyloid Plaque in Alzheimer's Disease Brain with a Biotinylated Aβ Peptide Radiopharmaceutical Conjugated to an IgG-Avidin Fusion Protein. Bioconjugate Chemistry, 2012, 23, 1318-1321.	1.8	17
290	Plasma Pharmacokinetics of High-Affinity Transferrin Receptor Antibody-Erythropoietin Fusion Protein is a Function of Effector Attenuation in Mice. Molecular Pharmaceutics, 2019, 16, 3534-3543.	2.3	17
291	Effects of Progesterone-Binding Globulin Versus a Progesterone Antiserum on Steroid Hormone Transport through the Blood-Brain Barrier*. Endocrinology, 1980, 106, 1137-1141.	1.4	16
292	Developmental changes in brain and serum binding of testosterone and in brain capillary uptake of testosterone-binding serum proteins in the rabbit. Developmental Brain Research, 1988, 38, 245-253.	2.1	16
293	Strategies for drug delivery through the blood-brain barrier. Neurobiology of Aging, 1989, 10, 636-637.	1.5	16
294	Very High Plasma Concentrations of a Monoclonal Antibody against the Human Insulin Receptor Are Produced by Subcutaneous Injection in the Rhesus Monkey. Molecular Pharmaceutics, 2016, 13, 3241-3246.	2.3	16
295	Lyoprotectant Optimization for the Freeze-Drying of Receptor-Targeted Trojan Horse Liposomes for Plasmid DNA Delivery. Molecular Pharmaceutics, 2020, 17, 2165-2174.	2.3	16
296	Role of intracellular calcium in regulation of brain endothelial permeability., 1998,, 345-353.		15
297	Selective Lutheran Glycoprotein Gene Expression at the Blood—Brain Barrier in Normal Brain and in Human Brain Tumors. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1096-1102.	2.4	15
298	Non-invasive gene targeting to the fetal brain after intravenous administration and transplacental transfer of plasmid DNA using PEGylated immunoliposomes. Journal of Drug Targeting, 2016, 24, 58-67.	2.1	15
299	The blood-brain barrier: Bottleneck in brain drug development. Neurotherapeutics, 2005, 2, 3-14.	2.1	15
300	Imaging Gene Expression in Regional Brain Ischemia In Vivo with a Targeted [¹¹¹ In]-Antisense Radiopharmaceutical. Molecular Imaging, 2004, 3, 356-363.	0.7	15
301	Strategies for Drug Delivery through the Blood-Brain Barrier. , 1985, , 83-96.		14
302	Ultrastructural localization of blood-brain barrier-specific antibodies using immunogold-silver enhancement techniques. Journal of Neuroscience Methods, 1991, 37, 103-110.	1.3	14
303	Isolated brain capillaries: an in vitro model of blood–brain barrier research. , 1998, , 49-61.		14
304	Site-Directed Deletion of a 10-Nucleotide Domain of the 3′-Untranslated Region of the GLUT1 Glucose Transporter mRNA Eliminates Cytosolic Protein Binding in Human Brain Tumors and Induction of Reporter Gene Expression. Journal of Neurochemistry, 2002, 68, 2587-2592.	2.1	14
305	Human LAT1 single nucleotide polymorphism N230K does not alter phenylalanine transport. Molecular Genetics and Metabolism, 2004, 83, 306-311.	0.5	14
306	Biology of the blood–brain glucose transporter. , 1998, , 165-174.		14

#	Article	IF	CITATIONS
307	Kinetics of lactate transport into rat liver in vivo. Metabolism: Clinical and Experimental, 1990, 39, 374-377.	1.5	13
308	Decreases in brain protein synthesis elicited by moderate increases in plasma phenylalanine. Biochemical and Biophysical Research Communications, 1990, 168, 1177-1183.	1.0	13
309	Pharmacokinetic differences between 111ln- and 125l- Labeled cationized monoclonal antibody against \hat{l}^2 -Amyloid in mouse and dog. Drug Delivery, 1995, 2, 128-135.	2.5	13
310	Hematologic safety of chronic brainâ€penetrating erythropoietin dosing in APP/PS1 mice. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 627-636.	1.8	13
311	Rat Blood???Brain Barrier Genomics. II. Journal of Cerebral Blood Flow and Metabolism, 2002, , 1319-1326.	2.4	13
312	Blood-brain barrier genomics and the use of endogenous transporters to cause drug penetration into the brain. Current Opinion in Drug Discovery & Development, 2003, 6, 683-91.	1.9	13
313	Acute and Chronic Dosing of a High-Affinity Rat/Mouse Chimeric Transferrin Receptor Antibody in Mice. Pharmaceutics, 2020, 12, 852.	2.0	12
314	Phenylalanine Transport at the Human Blood-Brain Barrier. , 1988, , 55-62.		12
315	New Directions in Blood-Brain Barrier Research Annals of the New York Academy of Sciences, 1988, 529, 50-60.	1.8	11
316	Blood–brain barrier ion transport. , 1998, , 207-213.		11
317	Developmental Regulation of the Rabbit Blood-Brain Barrier LAT1 Large Neutral Amino Acid Transporter mRNA and Protein. Pediatric Research, 2004, 55, 557-560.	1.1	11
318	Bloodâ€"brain barrier permeability measured with histochemistry., 1998,, 113-121.		11
319	Brain microvasculature in multiple sclerosis. , 1998, , 386-400.		11
320	Reduction of testosterone availability to $5l\pm$ -reductase by human sex hormone-binding globulin in the rat ventral prostate gland in vivo. Prostate, 1990, 17, 281-291.	1.2	10
321	Targeting of an Anti-CR3 (CD11b/CD18) Monoclonal Antibody to Spleen But Not Brain, In Vivo in Mice. Journal of Drug Targeting, 1995, 3, 9-14.	2.1	10
322	Amplification of gene expression using both $5\hat{a}\in^2$ - and $3\hat{a}\in^2$ -untranslated regions of GLUT1 glucose transporter mRNA. Molecular Brain Research, 1999, 63, 371-374.	2.5	10
323	Brain microvessel endothelial cell culture systems. , 1998, , 86-93.		9
324	Blood–brain barrier transport of drugs. , 1998, , 238-248.		9

#	Article	IF	Citations
325	Physiologic-based strategies for protein drug delivery to the brain. Journal of Controlled Release, 1996, 39, 281-286.	4.8	8
326	The 5′-Untranslated Region of GLUT1 Glucose Transporter mRNA Causes Differential Regulation of the Translational Rate in Plant and Animal Systems. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 118, 309-312.	0.7	8
327	Treatment of Large Solid Tumors in Mice with Daunomycin-Loaded Sterically Stabilized Liposomes. Drug Delivery, 1998, 5, 207-212.	2.5	8
328	The blood-CSF barrier and the choroid plexus. , 1998, , 251-258.		8
329	Arachnoid membrane, subarachnoid CSF and pia–glia. , 1998, , 259-269.		8
330	Circumventricular organs of the brain. , 1998, , 270-276.		8
331	Red cell phenylalanine is not available for transport through the blood-brain barrier. Neurochemical Research, 1990, 15, 769-772.	1.6	7
332	Transport in the developing brain. , 1998, , 277-290.		7
333	Isolation and behavior of plasma membrane vesicles made from cerebral capillary endothelial cells., 1998,, 62-70.		7
334	Molecular dissection of tight junctions: occludin and ZO-1., 1998,, 322-329.		6
335	The pathophysiology of blood–brain barrier dysfunction due to traumatic brain injury. , 1998, , 441-453.		6
336	Transport of small molecules through the blood-brain barrier: biology and methodology Advanced Drug Delivery Reviews, 1995, 15, 5-36.	6.6	6
337	Tissue culture of brain endothelial cells – induction of blood–brain barrier properties by brain factors. , 1998, , 79-85.		5
338	Preclinical studies of a brain penetrating IgG Trojan horse-arylsulfatase fusion protein in the metachromatic leukodystrophy mouse. Molecular Genetics and Metabolism, 2019, 126, S77.	0.5	5
339	Intracerebral microdialysis., 1998,, 94-112.		5
340	Molecular biology of brain capillaries. , 1998, , 151-162.		5
341	P-glycoprotein, a guardian of the brain. , 1998, , 198-206.		5
342	Cerebral amyloid angiopathy., 1998,, 379-385.		5

#	Article	lF	Citations
343	Development of Brain Efflux Index (BEI) method and its application to the blood–brain barrier efflux transport study. , 1998, , 24-31.		4
344	HIV infection and the blood–brain barrier. , 1998, , 419-426.		4
345	Imaging Gene Expression in Regional Brain Ischemia in Vivo with a Targeted [111 In]-Antisense Radiopharmaceutical. Molecular Imaging, 2004, 3, 153535002004041.	0.7	4
346	Eliminating Fc N-Linked Glycosylation and Its Impact on Dosing Consideration for a Transferrin Receptor Antibody-Erythropoietin Fusion Protein in Mice. Molecular Pharmaceutics, 2020, 17, 2831-2839.	2.3	4
347	Steroid Hormone Transport through Blood–Brain Barrier: Methods and Concepts. Methods in Neurosciences, 1994, 22, 3-22.	0.5	4
348	The blood-brain barrier in brain tumours. , 1998, , 434-440.		4
349	Localization of Blood-Brain Barrier-Specific Antibodies with Immunogold-Silver Enhancement. Journal of Histotechnology, 1993, 16, 249-257.	0.2	3
350	Drug transport across the blood–Brain barrier: In Vitro and In Vivo techniques. Drug Delivery, 1998, 5, 153-153.	2.5	3
351	The carotid artery single injection technique. , 1998, , 11-23.		3
352	Blood–brain barrier and monoamines, revisited. , 1998, , 362-376.		3
353	Neuroprotection in stroke: is it time to consider large-molecule drugs?. Drug Discovery Today, 2001, 6, 751-753.	3.2	3
354	Brain Capillary Endothelial Transport of Insulin. , 1992, , 347-362.		3
355	Measuring cerebral capillary permeability–surface area products by quantitative autoradiography. , 1998, , 122-132.		3
356	Ion channels in endothelial cells., 1998,, 214-220.		3
357	Microvascular pathology in cerebrovascular ischemia. , 1998, , 409-418.		3
358	Preface: Overview of brain drug delivery Advanced Drug Delivery Reviews, 1995, 15, 1-3.	6.6	3
359	Matters Arising. Journal of Neurochemistry, 1982, 39, 1774-1776.	2.1	2
360	Predominant Low-Molecular-Weight Proteins in Isolated Brain Capillaries Are Histones. Journal of Neurochemistry, 1989, 53, 1014-1018.	2.1	2

#	Article	IF	Citations
361	Formulation of therapeutic synthetic polymers for drug and gene delivery â—¾. Drug Discovery Today, 2002, 7, 1120-1121.	3.2	2
362	Imaging gene expression in the brain with peptide nucleic acid (PNA) antisense radiopharmaceuticals and drug targeting technology. International Journal of Peptide Research and Therapeutics, 2003, 10, 169-190.	0.9	2
363	Safety and clinical efficacy of AGT-181, a brain penetrating human insulin receptor antibody-iduronidase fusion protein, in a 26-week study with pediatric patients with mucopolysaccharidosis type I. Molecular Genetics and Metabolism, 2018, 123, S54.	0.5	2
364	Blood-Brain Barrier Transport Mechanisms. , 1997, , 21-25.		2
365	Patch clamp techniques with isolated brain microvessel membranes. , 1998, , 71-78.		2
366	Measurement of blood–brain barrier in humans using indicator diffusion. , 1998, , 133-139.		2
367	Regulation of brain endothelial cell tight junction permeability. , 1998, , 293-300.		2
368	Nitric oxide and endothelin at the blood–brain barrier. , 1998, , 338-344.		2
369	Vector-mediated peptide drug delivery to the brain Advanced Drug Delivery Reviews, 1995, 15, 109-146.	6.6	2
370	The effects of membrane permeability and binding by human serum proteins on steroid influx into the rabbit uterus. American Journal of Obstetrics and Gynecology, 1987, 157, 1543-1549.	0.7	1
371	Triiodothyronine bound to red blood cells is not available for transport through the blood-brain barrier. Neurochemical Research, 1989, 14, 657-659.	1.6	1
372	Interactions of lipoproteins with the blood–brain barrier. , 1998, , 221-226.		1
373	Cytokines and the blood-brain barrier. , 1998, , 354-361.		1
374	<i>In situ</i> brain perfusion., 1998,, 32-40.		1
375	Imaging Gene Expression in the Brain with Peptide Nucleic Acid (PNA) Antisense Radiopharmaceuticals and Drug Targeting Technology. , 2006, , 38-60.		1
376	P3â€057: THERAPEUTIC EFFECTS OF A BRAIN PENETRATING BISPECIFIC ERYTHROPOIETINâ€TRANSFERRIN RECEP ANTIBODY FUSION PROTEIN IN THE APP/PS1 MOUSE MODEL OF ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1086.	TOR 0.4	1
377	Platform technology for treatment of the brain in lysosomal disorders: Application to Niemann-Pick disease type A. Molecular Genetics and Metabolism, 2019, 126, S95-S96.	0.5	1
378	Molecular Regulation of Blood-Brain Barrier GLUT1 Glucose Transporter., 1995,, 81-88.		1

#	Article	IF	Citations
379	Blood-Brain Barrier Transport for RNAi. , 2009, , 255-273.		1
380	Receptor-mediated peptide transport through the blood-brain barrier. , 1988, , 593-595.		1
381	Measurement of blood–brain permeability in humans with positron emission tomography. , 1998, , 140-146.		1
382	Glucose transporters in mammalian brain development., 1998,, 175-187.		1
383	Chemotherapy and chemosensitization. , 1998, , 301-307.		1
384	Hemostasis and the blood–brain barrier. , 1998, , 401-408.		1
385	Brain microvessel antigens. , 1998, , 314-321.		1
386	S1-01-01: Blood-brain barrier from physiology to therapeutics. , 2015, 11, P114-P114.		0
387	[O4–06–04]: PROTECTIVE EFFECTS OF A BRAINâ€PENETRATING BIOLOGIC TNFâ€ALPHA INHIBITOR IN A MC MODEL OF ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P1242.	USE 0.4	0
388	Platform technology for treatment of the brain in lysosomal disorders. Molecular Genetics and Metabolism, 2018, 123, S77.	0.5	0
389	Platform technology for treatment of the brain in lysosomal disorders: Application to Tay-Sachs disease. Molecular Genetics and Metabolism, 2019, 126, S32.	0.5	0
390	Platform technology for treatment of the brain in lysosomal diseases: Application to NCL1 Batten disease. Molecular Genetics and Metabolism, 2019, 126, S114-S115.	0.5	0
391	Lipid composition of brain microvessels. , 1998, , 308-313.		0
392	Magnetic resonance imaging of blood–brain barrier permeability. , 1998, , 147-150.		0
393	Intravenous injection/pharmacokinetics. , 1998, , 41-48.		0
394	Fatty acid and lipid intermediate transport. , 1998, , 227-237.		0
395	Phosphatidylinositol pathways. , 1998, , 330-337.		0
396	Blood–Brain Barrier Targeting of Therapeutic Lysosomal Enzymes. AAPS Advances in the Pharmaceutical Sciences Series, 2015, , 41-62.	0.2	0

#	Article	IF	CITATIONS
397	Imaging gene expression in the brain with peptide nucleic acid (PNA) antisense radiopharmaceuticals and drug targeting technology. International Journal of Peptide Research and Therapeutics, 2005, 10, 169-190.	0.9	O
398	Imaging gene expression in the brain with peptide nucleic acid (PNA) antisense radiopharmaceuticals and drug targeting technology. International Journal of Peptide Research and Therapeutics, 2003, 10, 169-190.	0.1	0
399	Tyrosine hydroxylase replacement in experimental Parkinson's disease with transvascular gene therapy. Neurotherapeutics, 2005, 2, 129-138.	2.1	0