Daxiong Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3670807/publications.pdf

Version: 2024-02-01

279798 361022 3,093 34 23 35 h-index citations g-index papers 38 38 38 2930 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel autoantibodies to the \hat{l}^2 -cell surface epitopes of ZnT8 in patients progressing to type-1 diabetes. Journal of Autoimmunity, 2021, 122, 102677.	6.5	11
2	Zinc transporters and their functional integration in mammalian cells. Journal of Biological Chemistry, 2021, 296, 100320.	3.4	125
3	Water molecules mediate zinc mobility in the bacterial zinc diffusion channel ZIPB. Journal of Biological Chemistry, 2019, 294, 13327-13335.	3.4	16
4	Down-regulation of the islet-specific zinc transporter-8 (ZnT8) protects human insulinoma cells against inflammatory stress. Journal of Biological Chemistry, 2019, 294, 16992-17006.	3.4	16
5	Induction of the metal transporter ZIP8 by interferon gamma in intestinal epithelial cells: Potential role of metal dyshomeostasis in Crohn's disease. Biochemical and Biophysical Research Communications, 2019, 515, 325-331.	2.1	19
6	A subclass of serum anti-ZnT8 antibodies directed to the surface of live pancreatic \hat{l}^2 -cells. Journal of Biological Chemistry, 2018, 293, 579-587.	3.4	16
7	Highly specific monoclonal antibodies for allosteric inhibition and immunodetection of the human pancreatic zinc transporter ZnT8. Journal of Biological Chemistry, 2018, 293, 16206-16216.	3.4	11
8	Coupling of Insulin Secretion and Display of a Granule-resident Zinc Transporter ZnT8 on the Surface of Pancreatic Beta Cells. Journal of Biological Chemistry, 2017, 292, 4034-4043.	3.4	29
9	Proteoliposome-based full-length ZnT8 self-antigen for type 1 diabetes diagnosis on a plasmonic platform. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10196-10201.	7.1	31
10	Lipid-tuned Zinc Transport Activity of Human ZnT8 Protein Correlates with Risk for Type-2 Diabetes. Journal of Biological Chemistry, 2016, 291, 26950-26957.	3.4	64
11	The PP-motif in luminal loop 2 of ZnT transporters plays a pivotal role in TNAP activation. Biochemical Journal, 2016, 473, 2611-2621.	3.7	23
12	Intact Functional Fourteen-subunit Respiratory Membrane-bound [NiFe]-Hydrogenase Complex of the Hyperthermophilic Archaeon Pyrococcus furiosus. Journal of Biological Chemistry, 2014, 289, 19364-19372.	3.4	37
13	Visualizing the kinetic power stroke that drives proton-coupled zinc(ii) transport. Nature, 2014, 512, 101-104.	27.8	91
14	Metalloproteomics: challenges and prospective for clinical research applications. Expert Review of Proteomics, 2014, 11, 13-19.	3.0	17
15	Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn ²⁺ over Cd ²⁺ selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7202-7207.	7.1	117
16	Selective Electrodiffusion of Zinc Ions in a Zrt-, Irt-like Protein, ZIPB*. Journal of Biological Chemistry, 2010, 285, 39013-39020.	3.4	99
17	Structural basis for autoregulation of the zinc transporter YiiP. Nature Structural and Molecular Biology, 2009, 16, 1063-1067.	8.2	227
18	The Structure of G1pF, A Glycerol Conducting Channel. Novartis Foundation Symposium, 2008, , 51-65.	1.1	14

#	Article	IF	CITATIONS
19	The structural basis of water permeation and proton exclusion in aquaporins (Review). Molecular Membrane Biology, 2007, 24, 366-374.	2.0	90
20	Structure of the Zinc Transporter YiiP. Science, 2007, 317, 1746-1748.	12.6	355
21	Crystal Structure of AqpZ Tetramer Reveals Two Distinct Arg-189 Conformations Associated with Water Permeation through the Narrowest Constriction of the Water-conducting Channel. Journal of Biological Chemistry, 2006, 281, 454-460.	3.4	101
22	Binding and Transport of Metal Ions at the Dimer Interface of the Escherichia coli Metal Transporter YiiP. Journal of Biological Chemistry, 2006, 281, 23492-23502.	3.4	76
23	Selective Metal Binding to a Membrane-embedded Aspartate in the Escherichia coli Metal Transporter YiiP (FieF). Journal of Biological Chemistry, 2005, 280, 33716-33724.	3.4	96
24	Kinetic Study of the Antiport Mechanism of an Escherichia coli Zinc Transporter, ZitB. Journal of Biological Chemistry, 2004, 279, 12043-12050.	3.4	143
25	Thermodynamic Studies of the Mechanism of Metal Binding to the Escherichia coli Zinc Transporter YiiP. Journal of Biological Chemistry, 2004, 279, 17173-17180.	3.4	104
26	Oligomeric State of the Escherichia coli Metal Transporter YiiP. Journal of Biological Chemistry, 2004, 279, 39251-39259.	3.4	58
27	Crystallization and preliminary crystallographic analysis of theEscherichia coliwater channel AqpZ. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 561-563.	2.5	7
28	The structure of GlpF, a glycerol conducting channel. Novartis Foundation Symposium, 2002, 245, 51-61; discussion 61-5, 165-8.	1.1	5
29	Atomic structure of a glycerol channel and implications for substrate permeation in aqua(glycero)porins. FEBS Letters, 2001, 504, 112-117.	2.8	37
30	Structure/Function Relationships in OxIT, the Oxalate-Formate Transporter of Oxalobacter formigenes. Journal of Biological Chemistry, 2001, 276, 8753-8760.	3.4	25
31	Structure of a Glycerol-Conducting Channel and the Basis for Its Selectivity. Science, 2000, 290, 481-486.	12.6	938
32	Structure-Function Relationships in OxlT, the Oxalate/Formate Transporter of Oxalobacter formigenes. Journal of Biological Chemistry, 1998, 273, 17962-17967.	3.4	32
33	Evaluation of Secondary Structure of OxlT, the Oxalate Transporter of Oxalobacter formigenes, by Circular Dichroism Spectroscopy. Journal of Biological Chemistry, 1997, 272, 2129-2135.	3.4	31
34	Asymmetric Contribution of the Conserved Disulfide Loop to Subunit Oligomerization and Assembly of the Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 1996, 271, 31479-31484.	3.4	27